{"title":"Development of an Integrated CMUTs-Based Resonant Biosensor for Label-Free Detection of DNA with Improved Selectivity by Ethylene-Glycol Alkanethiols","authors":"","doi":"10.1016/j.eng.2023.12.015","DOIUrl":null,"url":null,"abstract":"<div><div>Gravimetric resonant-inspired biosensors have attracted increasing attention in industrial and point-of-care applications, enabling label-free detection of biomarkers such as DNA and antibodies. Capacitive micromachined ultrasonic transducers (CMUTs) are promising tools for developing miniaturized high-performance biosensing complementary metal–oxide–silicon (CMOS) platforms. However, their operability is limited by inefficient functionalization, aggregation, crosstalk in the buffer, and the requirement for an external high-voltage (HV) power supply. In this study, we aimed to propose a CMUTs-based resonant biosensor integrated with a CMOS front–end interface coupled with ethylene–glycol alkanethiols to detect single-stranded DNA oligonucleotides with large specificity. The topography of the functionalized surface was characterized by energy-dispersive X-ray microanalysis. Improved selectivity for on-chip hybridization was demonstrated by comparing complementary and non-complementary single-stranded DNA oligonucleotides using fluorescence imaging technology. The sensor array was further characterized using a five-element lumped equivalent model. The 4 mm<sup>2</sup> application-specific integrated circuit chip was designed and developed through 0.18 μm HV bipolar-CMOS-double diffused metal–oxide–silicon (DMOS) technology (BCD) to generate on-chip 20 V HV boosting and to track feedback frequency under a standard 1.8 V supply, with a total power consumption of 3.8 mW in a continuous mode. The measured results indicated a detection sensitivity of 7.943 × 10<sup>−3</sup> μmol∙L<sup>−1</sup>∙Hz<sup>−1</sup> over a concentration range of 1 to 100 μmol∙L<sup>−1</sup>. In conclusion, the label-free biosensing of DNA under dry conditions was successfully demonstrated using a microfabricated CMUT array with a 2 MHz frequency on CMOS electronics with an internal HV supplier. Moreover, ethylene–glycol alkanethiols successfully deposited self-assembled monolayers on aluminum electrodes, which has never been attempted thus far on CMUTs, to enhance the selectivity of bio-functionalization. The findings of this study indicate the possibility of full-on-chip DNA biosensing with CMUTs.</div></div>","PeriodicalId":11783,"journal":{"name":"Engineering","volume":null,"pages":null},"PeriodicalIF":10.1000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095809924002522","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Gravimetric resonant-inspired biosensors have attracted increasing attention in industrial and point-of-care applications, enabling label-free detection of biomarkers such as DNA and antibodies. Capacitive micromachined ultrasonic transducers (CMUTs) are promising tools for developing miniaturized high-performance biosensing complementary metal–oxide–silicon (CMOS) platforms. However, their operability is limited by inefficient functionalization, aggregation, crosstalk in the buffer, and the requirement for an external high-voltage (HV) power supply. In this study, we aimed to propose a CMUTs-based resonant biosensor integrated with a CMOS front–end interface coupled with ethylene–glycol alkanethiols to detect single-stranded DNA oligonucleotides with large specificity. The topography of the functionalized surface was characterized by energy-dispersive X-ray microanalysis. Improved selectivity for on-chip hybridization was demonstrated by comparing complementary and non-complementary single-stranded DNA oligonucleotides using fluorescence imaging technology. The sensor array was further characterized using a five-element lumped equivalent model. The 4 mm2 application-specific integrated circuit chip was designed and developed through 0.18 μm HV bipolar-CMOS-double diffused metal–oxide–silicon (DMOS) technology (BCD) to generate on-chip 20 V HV boosting and to track feedback frequency under a standard 1.8 V supply, with a total power consumption of 3.8 mW in a continuous mode. The measured results indicated a detection sensitivity of 7.943 × 10−3 μmol∙L−1∙Hz−1 over a concentration range of 1 to 100 μmol∙L−1. In conclusion, the label-free biosensing of DNA under dry conditions was successfully demonstrated using a microfabricated CMUT array with a 2 MHz frequency on CMOS electronics with an internal HV supplier. Moreover, ethylene–glycol alkanethiols successfully deposited self-assembled monolayers on aluminum electrodes, which has never been attempted thus far on CMUTs, to enhance the selectivity of bio-functionalization. The findings of this study indicate the possibility of full-on-chip DNA biosensing with CMUTs.
期刊介绍:
Engineering, an international open-access journal initiated by the Chinese Academy of Engineering (CAE) in 2015, serves as a distinguished platform for disseminating cutting-edge advancements in engineering R&D, sharing major research outputs, and highlighting key achievements worldwide. The journal's objectives encompass reporting progress in engineering science, fostering discussions on hot topics, addressing areas of interest, challenges, and prospects in engineering development, while considering human and environmental well-being and ethics in engineering. It aims to inspire breakthroughs and innovations with profound economic and social significance, propelling them to advanced international standards and transforming them into a new productive force. Ultimately, this endeavor seeks to bring about positive changes globally, benefit humanity, and shape a new future.