{"title":"Fractional social optimization-based migration and replica management algorithm for load balancing in distributed file system for cloud computing.","authors":"Manjula Hulagappa Nebagiri, Latha Pillappa Hnumanthappa","doi":"10.1080/0954898X.2024.2353665","DOIUrl":null,"url":null,"abstract":"<p><p>Effective management of data is a major issue in Distributed File System (DFS), like the cloud. This issue is handled by replicating files in an effective manner, which can minimize the time of data access and elevate the data availability. This paper devises a Fractional Social Optimization Algorithm (FSOA) for replica management along with balancing load in DFS in the cloud stage. Balancing the workload for DFS is the main objective. Here, the chunk creation is done by partitioning the file into a different number of chunks considering Deep Fuzzy Clustering (DFC) and then in the round-robin manner the Virtual machine (VM) is assigned. In that case for balancing the load considering certain objectives like resource use, energy consumption and migration cost thereby the load balancing is performed with the proposed FSOA. Here, the FSOA is formulated by uniting the Social optimization algorithm (SOA) and Fractional Calculus (FC). The replica management is done in DFS using the proposed FSOA by considering the various objectives. The FSOA has the smallest load of 0.299, smallest cost of 0.395, smallest energy consumption of 0.510, smallest overhead of 0.358, and smallest throughput of 0.537.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-28"},"PeriodicalIF":1.1000,"publicationDate":"2024-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network-Computation in Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0954898X.2024.2353665","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Effective management of data is a major issue in Distributed File System (DFS), like the cloud. This issue is handled by replicating files in an effective manner, which can minimize the time of data access and elevate the data availability. This paper devises a Fractional Social Optimization Algorithm (FSOA) for replica management along with balancing load in DFS in the cloud stage. Balancing the workload for DFS is the main objective. Here, the chunk creation is done by partitioning the file into a different number of chunks considering Deep Fuzzy Clustering (DFC) and then in the round-robin manner the Virtual machine (VM) is assigned. In that case for balancing the load considering certain objectives like resource use, energy consumption and migration cost thereby the load balancing is performed with the proposed FSOA. Here, the FSOA is formulated by uniting the Social optimization algorithm (SOA) and Fractional Calculus (FC). The replica management is done in DFS using the proposed FSOA by considering the various objectives. The FSOA has the smallest load of 0.299, smallest cost of 0.395, smallest energy consumption of 0.510, smallest overhead of 0.358, and smallest throughput of 0.537.
期刊介绍:
Network: Computation in Neural Systems welcomes submissions of research papers that integrate theoretical neuroscience with experimental data, emphasizing the utilization of cutting-edge technologies. We invite authors and researchers to contribute their work in the following areas:
Theoretical Neuroscience: This section encompasses neural network modeling approaches that elucidate brain function.
Neural Networks in Data Analysis and Pattern Recognition: We encourage submissions exploring the use of neural networks for data analysis and pattern recognition, including but not limited to image analysis and speech processing applications.
Neural Networks in Control Systems: This category encompasses the utilization of neural networks in control systems, including robotics, state estimation, fault detection, and diagnosis.
Analysis of Neurophysiological Data: We invite submissions focusing on the analysis of neurophysiology data obtained from experimental studies involving animals.
Analysis of Experimental Data on the Human Brain: This section includes papers analyzing experimental data from studies on the human brain, utilizing imaging techniques such as MRI, fMRI, EEG, and PET.
Neurobiological Foundations of Consciousness: We encourage submissions exploring the neural bases of consciousness in the brain and its simulation in machines.