{"title":"A secure worst elite sailfish optimizer based routing and deep learning for black hole attack detection.","authors":"Mandeep Kumar, Jahid Ali","doi":"10.1080/0954898X.2024.2363353","DOIUrl":null,"url":null,"abstract":"<p><p>The Wireless Sensor Network (WSN) is susceptible to two kinds of attacks, namely active attack and passive attack. In an active attack, the attacker directly communicates with the target system or network. In contrast, in passive attack, the attacker is in indirect contact with the network. To preserve the functionality and dependability of wireless sensor networks, this research has been conducted recently to detect and mitigate the black hole attacks. In this research, a Deep learning (DL) based black hole attack detection model is designed. The WSN simulation is the beginning stage of this process. Moreover, routing is the key process, where the data is passed to the base station (BS) via the shortest and finest route. The proposed Worst Elite Sailfish Optimization (WESFO) is utilized for routing. Moreover, black hole attack detection is performed in the BS. The Auto Encoder (AE) is employed in attack detection, which is trained with the use of the proposed WESFO algorithm. Additionally, the proposed model is validated in terms of delay, Packet Delivery Rate (PDR), throughput, False-Negative Rate (FNR), and False-Positive Rate (FPR) parameters with the corresponding outcomes like 25.64 s, 94.83%, 119.3, 0.084, and 0.135 are obtained.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-26"},"PeriodicalIF":1.1000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network-Computation in Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0954898X.2024.2363353","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The Wireless Sensor Network (WSN) is susceptible to two kinds of attacks, namely active attack and passive attack. In an active attack, the attacker directly communicates with the target system or network. In contrast, in passive attack, the attacker is in indirect contact with the network. To preserve the functionality and dependability of wireless sensor networks, this research has been conducted recently to detect and mitigate the black hole attacks. In this research, a Deep learning (DL) based black hole attack detection model is designed. The WSN simulation is the beginning stage of this process. Moreover, routing is the key process, where the data is passed to the base station (BS) via the shortest and finest route. The proposed Worst Elite Sailfish Optimization (WESFO) is utilized for routing. Moreover, black hole attack detection is performed in the BS. The Auto Encoder (AE) is employed in attack detection, which is trained with the use of the proposed WESFO algorithm. Additionally, the proposed model is validated in terms of delay, Packet Delivery Rate (PDR), throughput, False-Negative Rate (FNR), and False-Positive Rate (FPR) parameters with the corresponding outcomes like 25.64 s, 94.83%, 119.3, 0.084, and 0.135 are obtained.
期刊介绍:
Network: Computation in Neural Systems welcomes submissions of research papers that integrate theoretical neuroscience with experimental data, emphasizing the utilization of cutting-edge technologies. We invite authors and researchers to contribute their work in the following areas:
Theoretical Neuroscience: This section encompasses neural network modeling approaches that elucidate brain function.
Neural Networks in Data Analysis and Pattern Recognition: We encourage submissions exploring the use of neural networks for data analysis and pattern recognition, including but not limited to image analysis and speech processing applications.
Neural Networks in Control Systems: This category encompasses the utilization of neural networks in control systems, including robotics, state estimation, fault detection, and diagnosis.
Analysis of Neurophysiological Data: We invite submissions focusing on the analysis of neurophysiology data obtained from experimental studies involving animals.
Analysis of Experimental Data on the Human Brain: This section includes papers analyzing experimental data from studies on the human brain, utilizing imaging techniques such as MRI, fMRI, EEG, and PET.
Neurobiological Foundations of Consciousness: We encourage submissions exploring the neural bases of consciousness in the brain and its simulation in machines.