A secure worst elite sailfish optimizer based routing and deep learning for black hole attack detection.

IF 1.1 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Network-Computation in Neural Systems Pub Date : 2024-06-10 DOI:10.1080/0954898X.2024.2363353
Mandeep Kumar, Jahid Ali
{"title":"A secure worst elite sailfish optimizer based routing and deep learning for black hole attack detection.","authors":"Mandeep Kumar, Jahid Ali","doi":"10.1080/0954898X.2024.2363353","DOIUrl":null,"url":null,"abstract":"<p><p>The Wireless Sensor Network (WSN) is susceptible to two kinds of attacks, namely active attack and passive attack. In an active attack, the attacker directly communicates with the target system or network. In contrast, in passive attack, the attacker is in indirect contact with the network. To preserve the functionality and dependability of wireless sensor networks, this research has been conducted recently to detect and mitigate the black hole attacks. In this research, a Deep learning (DL) based black hole attack detection model is designed. The WSN simulation is the beginning stage of this process. Moreover, routing is the key process, where the data is passed to the base station (BS) via the shortest and finest route. The proposed Worst Elite Sailfish Optimization (WESFO) is utilized for routing. Moreover, black hole attack detection is performed in the BS. The Auto Encoder (AE) is employed in attack detection, which is trained with the use of the proposed WESFO algorithm. Additionally, the proposed model is validated in terms of delay, Packet Delivery Rate (PDR), throughput, False-Negative Rate (FNR), and False-Positive Rate (FPR) parameters with the corresponding outcomes like 25.64 s, 94.83%, 119.3, 0.084, and 0.135 are obtained.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-26"},"PeriodicalIF":1.1000,"publicationDate":"2024-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network-Computation in Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0954898X.2024.2363353","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The Wireless Sensor Network (WSN) is susceptible to two kinds of attacks, namely active attack and passive attack. In an active attack, the attacker directly communicates with the target system or network. In contrast, in passive attack, the attacker is in indirect contact with the network. To preserve the functionality and dependability of wireless sensor networks, this research has been conducted recently to detect and mitigate the black hole attacks. In this research, a Deep learning (DL) based black hole attack detection model is designed. The WSN simulation is the beginning stage of this process. Moreover, routing is the key process, where the data is passed to the base station (BS) via the shortest and finest route. The proposed Worst Elite Sailfish Optimization (WESFO) is utilized for routing. Moreover, black hole attack detection is performed in the BS. The Auto Encoder (AE) is employed in attack detection, which is trained with the use of the proposed WESFO algorithm. Additionally, the proposed model is validated in terms of delay, Packet Delivery Rate (PDR), throughput, False-Negative Rate (FNR), and False-Positive Rate (FPR) parameters with the corresponding outcomes like 25.64 s, 94.83%, 119.3, 0.084, and 0.135 are obtained.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于路由和深度学习的黑洞攻击检测的安全最差精英旗鱼优化器。
无线传感器网络(WSN)容易受到两种攻击,即主动攻击和被动攻击。在主动攻击中,攻击者直接与目标系统或网络通信。相比之下,在被动攻击中,攻击者与网络是间接接触。为了保持无线传感器网络的功能性和可靠性,最近开展了这项研究,以检测和缓解黑洞攻击。本研究设计了一种基于深度学习(DL)的黑洞攻击检测模型。WSN 模拟是这一过程的起始阶段。此外,路由是关键过程,数据通过最短和最细的路由传递到基站(BS)。路由选择采用了所提出的最差精英旗鱼优化(WESFO)方法。此外,还在 BS 中执行黑洞攻击检测。在攻击检测中使用了自动编码器(AE),该编码器是利用提出的 WESFO 算法训练的。此外,提议的模型还在延迟、数据包交付率(PDR)、吞吐量、假阴性率(FNR)和假阳性率(FPR)参数方面进行了验证,并获得了 25.64 秒、94.83%、119.3、0.084 和 0.135 等相应结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Network-Computation in Neural Systems
Network-Computation in Neural Systems 工程技术-工程:电子与电气
CiteScore
3.70
自引率
1.30%
发文量
22
审稿时长
>12 weeks
期刊介绍: Network: Computation in Neural Systems welcomes submissions of research papers that integrate theoretical neuroscience with experimental data, emphasizing the utilization of cutting-edge technologies. We invite authors and researchers to contribute their work in the following areas: Theoretical Neuroscience: This section encompasses neural network modeling approaches that elucidate brain function. Neural Networks in Data Analysis and Pattern Recognition: We encourage submissions exploring the use of neural networks for data analysis and pattern recognition, including but not limited to image analysis and speech processing applications. Neural Networks in Control Systems: This category encompasses the utilization of neural networks in control systems, including robotics, state estimation, fault detection, and diagnosis. Analysis of Neurophysiological Data: We invite submissions focusing on the analysis of neurophysiology data obtained from experimental studies involving animals. Analysis of Experimental Data on the Human Brain: This section includes papers analyzing experimental data from studies on the human brain, utilizing imaging techniques such as MRI, fMRI, EEG, and PET. Neurobiological Foundations of Consciousness: We encourage submissions exploring the neural bases of consciousness in the brain and its simulation in machines.
期刊最新文献
A review on real time implementation of soft computing techniques in thermal power plant. Optimizing tomato detection and counting in smart greenhouses: A lightweight YOLOv8 model incorporating high- and low-frequency feature transformer structures. HCAR-AM ground nut leaf net: Hybrid convolution-based adaptive ResNet with attention mechanism for detecting ground nut leaf diseases with adaptive segmentation. Kruskal Szekeres generative adversarial network augmented deep autoencoder for colorectal cancer detection. Can human brain connectivity explain verbal working memory?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1