{"title":"Mini time domain reflectometry probe for monitoring local soil moisture of cut-off walls in centrifuge model tests","authors":"Honghan Dong , Yun-Min Chen , Yu-Chao Li","doi":"10.1016/j.trgeo.2024.101278","DOIUrl":null,"url":null,"abstract":"<div><p>Moisture content is a critical geotechnical property of soils affecting the compressibility, shear strength and permeability. Time domain reflectometry (TDR) has been widely used to monitor the soil moisture content in field and unit cell and column tests in laboratory, while the typical TDR probes can not be used in laboratory scaled-down model tests since their needle lengths are no less than 5 cm. This paper presents a novel-designed and fabricated three-needle mini TDR probe, whose needles are 22 mm in length and 2 mm in diameter with a 10 mm needle spacing. The suitability and performance of the mini TDR probe have been evaluated in laboratory. The effectiveness of the TDR probe was validated through monitoring the consolidation process of a 6-cm thick soil-bentonite (SB) slurry-trench cut-off wall in the centrifuge model test (acceleration = 20g). The results indicate that the mini TDR probe is capable of real-time monitoring of soil moisture content variation in the supergravity condition. The proposed mini TDR probe is fabricated easily and quickly and has a great potential for monitoring local soil moisture content in laboratory model tests.</p></div>","PeriodicalId":56013,"journal":{"name":"Transportation Geotechnics","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Geotechnics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214391224000990","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Moisture content is a critical geotechnical property of soils affecting the compressibility, shear strength and permeability. Time domain reflectometry (TDR) has been widely used to monitor the soil moisture content in field and unit cell and column tests in laboratory, while the typical TDR probes can not be used in laboratory scaled-down model tests since their needle lengths are no less than 5 cm. This paper presents a novel-designed and fabricated three-needle mini TDR probe, whose needles are 22 mm in length and 2 mm in diameter with a 10 mm needle spacing. The suitability and performance of the mini TDR probe have been evaluated in laboratory. The effectiveness of the TDR probe was validated through monitoring the consolidation process of a 6-cm thick soil-bentonite (SB) slurry-trench cut-off wall in the centrifuge model test (acceleration = 20g). The results indicate that the mini TDR probe is capable of real-time monitoring of soil moisture content variation in the supergravity condition. The proposed mini TDR probe is fabricated easily and quickly and has a great potential for monitoring local soil moisture content in laboratory model tests.
期刊介绍:
Transportation Geotechnics is a journal dedicated to publishing high-quality, theoretical, and applied papers that cover all facets of geotechnics for transportation infrastructure such as roads, highways, railways, underground railways, airfields, and waterways. The journal places a special emphasis on case studies that present original work relevant to the sustainable construction of transportation infrastructure. The scope of topics it addresses includes the geotechnical properties of geomaterials for sustainable and rational design and construction, the behavior of compacted and stabilized geomaterials, the use of geosynthetics and reinforcement in constructed layers and interlayers, ground improvement and slope stability for transportation infrastructures, compaction technology and management, maintenance technology, the impact of climate, embankments for highways and high-speed trains, transition zones, dredging, underwater geotechnics for infrastructure purposes, and the modeling of multi-layered structures and supporting ground under dynamic and repeated loads.