Changes in intestinal microbiota, immunity and metabolism caused by mixed Lactiplantibacillus plantarum and Bacillus subtilis-fermented feed in Bamei pigs
Lei Wang, Jun Chen, Jianbo Zhang, Fafang Xu, Xuan Luo, Huili Pang, Miao Zhang, Yaoke Duan, Yimin Cai, Guofang Wu, Zhongfang Tan
{"title":"Changes in intestinal microbiota, immunity and metabolism caused by mixed Lactiplantibacillus plantarum and Bacillus subtilis-fermented feed in Bamei pigs","authors":"Lei Wang, Jun Chen, Jianbo Zhang, Fafang Xu, Xuan Luo, Huili Pang, Miao Zhang, Yaoke Duan, Yimin Cai, Guofang Wu, Zhongfang Tan","doi":"10.1186/s40538-024-00593-x","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>The Chinese pig breed Bamei faces numerous challenges, such as antibiotic abuse, feed shortages, weaning stress, low immunity and disease resistance after weaning. Probiotic-fermented feed is an ideal profile that can improve the intestinal microbiota, promote the digestion and absorption of nutrients, and improve immunity. However, the combined effect of long-term intake of probiotic-fermented feeds on the intestinal microbiota, intestinal metabolic profiles, and immunity in pigs is not well understood. Here, we investigated the effects of feeding basal feed, <i>Lactiplantibacillus</i>-fermented feed, <i>Bacillus subtilis</i>-fermented feed, mixed-fermented feed, and antibiotic-added feed for 100 days on the gut microbiota, immunity, and metabolism of Bamei pigs after feeding five different fermented feeds by using 16S rDNA high-throughput sequencing, enzyme-linked immunoassay, and untargeted metabolomics, respectively.</p><h3>Results</h3><p>16S rDNA sequencing revealed that after the piglets were fed five different feeds for 50 days, the structure of the intestinal microbiota of the Bamei pigs was significantly altered, and feeding the mixed <i>Lactiplantibacillus</i> (L.) <i>plantarum</i> and <i>Bacillus</i> (B.) <i>subtilis</i>-fermented feed not only increased the α-diversity of the intestinal microbiota and the relative abundance of <i>Lactobacillus</i>, but also suppressed the growth of the conditional pathogens, <i>Clostridium</i> and <i>Streptococcus</i>. The Sobs and Shannon indices were significantly lower (<i>p</i> < 0.05) on Day 10 in Group A, which was fed feed supplemented with antibiotics. Feeding mixed-fermented feed not only significantly increased the production of anti-inflammatory cytokines, but also significantly decreased the production of several proinflammatory cytokines and inhibited the TLR4/MyD88/NF-κB inflammatory-related signaling pathway (<i>p</i> < 0.05), even more so than antibiotics. The results of untargeted metabolomics showed that feeding mixed-fermented feed improved the metabolism of Bamei pigs by increasing the content of narceine and alpha-cephalin; promoting bile secretion; and facilitating the synthesis of phenylalanine, tyrosine, and steroid hormones. ATP-binding cassette (ABC) transporters were significantly enriched in the antibiotic group.</p><h3>Conclusion</h3><p>The mixed <i>L</i>. <i>plantarum</i> QP28-1a and <i>B</i>. <i>subtilis</i> QB8a-fermented feed not only improved the intestinal microbiota structure and metabolic profiles and regulated the metabolic pathways of tryptophan, phenylalanine, and steroid hormone biosynthesis, but also improved the immunity of Bamei pigs. This research provides an ideal, healthful, and environmentally sustainable approach for Bamei pig breeding and conservation.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":512,"journal":{"name":"Chemical and Biological Technologies in Agriculture","volume":"11 1","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chembioagro.springeropen.com/counter/pdf/10.1186/s40538-024-00593-x","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical and Biological Technologies in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1186/s40538-024-00593-x","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
The Chinese pig breed Bamei faces numerous challenges, such as antibiotic abuse, feed shortages, weaning stress, low immunity and disease resistance after weaning. Probiotic-fermented feed is an ideal profile that can improve the intestinal microbiota, promote the digestion and absorption of nutrients, and improve immunity. However, the combined effect of long-term intake of probiotic-fermented feeds on the intestinal microbiota, intestinal metabolic profiles, and immunity in pigs is not well understood. Here, we investigated the effects of feeding basal feed, Lactiplantibacillus-fermented feed, Bacillus subtilis-fermented feed, mixed-fermented feed, and antibiotic-added feed for 100 days on the gut microbiota, immunity, and metabolism of Bamei pigs after feeding five different fermented feeds by using 16S rDNA high-throughput sequencing, enzyme-linked immunoassay, and untargeted metabolomics, respectively.
Results
16S rDNA sequencing revealed that after the piglets were fed five different feeds for 50 days, the structure of the intestinal microbiota of the Bamei pigs was significantly altered, and feeding the mixed Lactiplantibacillus (L.) plantarum and Bacillus (B.) subtilis-fermented feed not only increased the α-diversity of the intestinal microbiota and the relative abundance of Lactobacillus, but also suppressed the growth of the conditional pathogens, Clostridium and Streptococcus. The Sobs and Shannon indices were significantly lower (p < 0.05) on Day 10 in Group A, which was fed feed supplemented with antibiotics. Feeding mixed-fermented feed not only significantly increased the production of anti-inflammatory cytokines, but also significantly decreased the production of several proinflammatory cytokines and inhibited the TLR4/MyD88/NF-κB inflammatory-related signaling pathway (p < 0.05), even more so than antibiotics. The results of untargeted metabolomics showed that feeding mixed-fermented feed improved the metabolism of Bamei pigs by increasing the content of narceine and alpha-cephalin; promoting bile secretion; and facilitating the synthesis of phenylalanine, tyrosine, and steroid hormones. ATP-binding cassette (ABC) transporters were significantly enriched in the antibiotic group.
Conclusion
The mixed L. plantarum QP28-1a and B. subtilis QB8a-fermented feed not only improved the intestinal microbiota structure and metabolic profiles and regulated the metabolic pathways of tryptophan, phenylalanine, and steroid hormone biosynthesis, but also improved the immunity of Bamei pigs. This research provides an ideal, healthful, and environmentally sustainable approach for Bamei pig breeding and conservation.
期刊介绍:
Chemical and Biological Technologies in Agriculture is an international, interdisciplinary, peer-reviewed forum for the advancement and application to all fields of agriculture of modern chemical, biochemical and molecular technologies. The scope of this journal includes chemical and biochemical processes aimed to increase sustainable agricultural and food production, the evaluation of quality and origin of raw primary products and their transformation into foods and chemicals, as well as environmental monitoring and remediation. Of special interest are the effects of chemical and biochemical technologies, also at the nano and supramolecular scale, on the relationships between soil, plants, microorganisms and their environment, with the help of modern bioinformatics. Another special focus is the use of modern bioorganic and biological chemistry to develop new technologies for plant nutrition and bio-stimulation, advancement of biorefineries from biomasses, safe and traceable food products, carbon storage in soil and plants and restoration of contaminated soils to agriculture.
This journal presents the first opportunity to bring together researchers from a wide number of disciplines within the agricultural chemical and biological sciences, from both industry and academia. The principle aim of Chemical and Biological Technologies in Agriculture is to allow the exchange of the most advanced chemical and biochemical knowledge to develop technologies which address one of the most pressing challenges of our times - sustaining a growing world population.
Chemical and Biological Technologies in Agriculture publishes original research articles, short letters and invited reviews. Articles from scientists in industry, academia as well as private research institutes, non-governmental and environmental organizations are encouraged.