Daniela Addessi, Francesco D’Annibale, Luca Placidi, Ivan Giorgio
{"title":"A bone remodeling approach encoding the effect of damage and a diffusive bio-mechanical stimulus","authors":"Daniela Addessi, Francesco D’Annibale, Luca Placidi, Ivan Giorgio","doi":"10.1007/s00161-024-01308-1","DOIUrl":null,"url":null,"abstract":"<div><p>The paper focuses on the effect of damage on the bone remodeling process. This is a crucial, although complex, aspect. A one-dimensional continuous deformable body is employed to model living bone tissue. The model incorporates the bone functional adaptation through an evolution law for an effective elastic modulus driven by mechanical feedback via a mechano-transduction diffusive signal. This type of information transduction, i.e., diffusion, is essential for the model to take into account remodeling in the case of minor injury or pathology-affected regions where there is no signal production. In addition, the model is able to also take into account potential tissue damage that may evolve over time according to a suitable evolution law. To illustrate the capability of the model to describe the mentioned complex coupled phenomena, numerical tests have been performed encompassing high external loads causing the onset of damage and cyclic loading for healing. The numerical simulations carried out via finite-element analyses yield insights into the mechanisms of bone remodeling, with the final goal of aiding clinical decisions and implant designs for bone health and repair. Overall, a key aspect of the paper is to highlight the feasibility of modeling the evolution in bone elasticity arising from the combined effect of damage and remodeling.</p></div>","PeriodicalId":525,"journal":{"name":"Continuum Mechanics and Thermodynamics","volume":"36 4","pages":"993 - 1012"},"PeriodicalIF":1.9000,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00161-024-01308-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Continuum Mechanics and Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00161-024-01308-1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
The paper focuses on the effect of damage on the bone remodeling process. This is a crucial, although complex, aspect. A one-dimensional continuous deformable body is employed to model living bone tissue. The model incorporates the bone functional adaptation through an evolution law for an effective elastic modulus driven by mechanical feedback via a mechano-transduction diffusive signal. This type of information transduction, i.e., diffusion, is essential for the model to take into account remodeling in the case of minor injury or pathology-affected regions where there is no signal production. In addition, the model is able to also take into account potential tissue damage that may evolve over time according to a suitable evolution law. To illustrate the capability of the model to describe the mentioned complex coupled phenomena, numerical tests have been performed encompassing high external loads causing the onset of damage and cyclic loading for healing. The numerical simulations carried out via finite-element analyses yield insights into the mechanisms of bone remodeling, with the final goal of aiding clinical decisions and implant designs for bone health and repair. Overall, a key aspect of the paper is to highlight the feasibility of modeling the evolution in bone elasticity arising from the combined effect of damage and remodeling.
期刊介绍:
This interdisciplinary journal provides a forum for presenting new ideas in continuum and quasi-continuum modeling of systems with a large number of degrees of freedom and sufficient complexity to require thermodynamic closure. Major emphasis is placed on papers attempting to bridge the gap between discrete and continuum approaches as well as micro- and macro-scales, by means of homogenization, statistical averaging and other mathematical tools aimed at the judicial elimination of small time and length scales. The journal is particularly interested in contributions focusing on a simultaneous description of complex systems at several disparate scales. Papers presenting and explaining new experimental findings are highly encouraged. The journal welcomes numerical studies aimed at understanding the physical nature of the phenomena.
Potential subjects range from boiling and turbulence to plasticity and earthquakes. Studies of fluids and solids with nonlinear and non-local interactions, multiple fields and multi-scale responses, nontrivial dissipative properties and complex dynamics are expected to have a strong presence in the pages of the journal. An incomplete list of featured topics includes: active solids and liquids, nano-scale effects and molecular structure of materials, singularities in fluid and solid mechanics, polymers, elastomers and liquid crystals, rheology, cavitation and fracture, hysteresis and friction, mechanics of solid and liquid phase transformations, composite, porous and granular media, scaling in statics and dynamics, large scale processes and geomechanics, stochastic aspects of mechanics. The journal would also like to attract papers addressing the very foundations of thermodynamics and kinetics of continuum processes. Of special interest are contributions to the emerging areas of biophysics and biomechanics of cells, bones and tissues leading to new continuum and thermodynamical models.