Can Lagoons Serve as a Quaternary Treatment for Micropollutants in Wastewater Treatment Plants? Recent Implications for Compliance with the New Urban Wastewater Treatment Directive
Lissette Díaz-Gamboa, Sofía Martínez-López, Luis Miguel Ayuso-García, A. Lahora, Isabel Martínez-Alcalá
{"title":"Can Lagoons Serve as a Quaternary Treatment for Micropollutants in Wastewater Treatment Plants? Recent Implications for Compliance with the New Urban Wastewater Treatment Directive","authors":"Lissette Díaz-Gamboa, Sofía Martínez-López, Luis Miguel Ayuso-García, A. Lahora, Isabel Martínez-Alcalá","doi":"10.3390/environments11060105","DOIUrl":null,"url":null,"abstract":"This study explores the potential of storage lagoons as a quaternary treatment step in wastewater treatment plants (WWTPs), focusing on compliance with the recent European Urban Wastewater Treatment Directive (UWWTD), which mandates an 80% reduction in specific micropollutants. While conventional treatments effectively remove residual nutrients and solids, the potential of storage lagoons as an additional treatment is not fully defined. This research aims to address this gap by assessing the efficacy of storage lagoons in refining the effluent quality at the Cabezo Beaza WWTP, considering recent UWWTD requirements. We conduct a comprehensive assessment of the water quality parameters and micropollutants, before and after the storage lagoon stage, at the Cabezo Beaza WWTP. The results indicate that this strategy of prolonged storage in lagoons manages to meet the reduction objectives established by the Directive, reaching elimination percentages greater than 80% for the majority of the analyzed micropollutants. Our findings suggest that lagoons significantly improve water quality and reduce contaminants beyond conventional treatments, offering environmental and economic benefits. This paper discusses the mechanisms behind these improvements, such as natural sedimentation, microbial activity, and potential phytoremediation. This study contributes to the research on advanced wastewater treatment and supports the integration of storage lagoons as a viable quaternary treatment solution that meets the UWWTD standards.","PeriodicalId":11886,"journal":{"name":"Environments","volume":"51 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/environments11060105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This study explores the potential of storage lagoons as a quaternary treatment step in wastewater treatment plants (WWTPs), focusing on compliance with the recent European Urban Wastewater Treatment Directive (UWWTD), which mandates an 80% reduction in specific micropollutants. While conventional treatments effectively remove residual nutrients and solids, the potential of storage lagoons as an additional treatment is not fully defined. This research aims to address this gap by assessing the efficacy of storage lagoons in refining the effluent quality at the Cabezo Beaza WWTP, considering recent UWWTD requirements. We conduct a comprehensive assessment of the water quality parameters and micropollutants, before and after the storage lagoon stage, at the Cabezo Beaza WWTP. The results indicate that this strategy of prolonged storage in lagoons manages to meet the reduction objectives established by the Directive, reaching elimination percentages greater than 80% for the majority of the analyzed micropollutants. Our findings suggest that lagoons significantly improve water quality and reduce contaminants beyond conventional treatments, offering environmental and economic benefits. This paper discusses the mechanisms behind these improvements, such as natural sedimentation, microbial activity, and potential phytoremediation. This study contributes to the research on advanced wastewater treatment and supports the integration of storage lagoons as a viable quaternary treatment solution that meets the UWWTD standards.