{"title":"Life Cycle Assessment of Per- and Polyfluoroalkyl Substances (PFAS) Remediation Technologies: A Literature Review","authors":"Xingqiang Song, Malin Montelius, Christel Carlsson","doi":"10.3390/environments11090203","DOIUrl":null,"url":null,"abstract":"The remediation of environments contaminated with per- and polyfluoroalkyl substances (PFAS) has become a growing priority due to the persistent, bioaccumulative, and toxic characteristics of these compounds. To promote green and sustainable remediation practices, it is crucial to assess and minimize the environmental impacts of PFAS remediation projects through life cycle assessment (LCA) at the early stages of planning. So far, no systematic literature review has been published to assess the current state of the art or identify the challenges associated with applying LCA to PFAS remediation. This article provides a review of the recent literature on LCAs of PFAS remediation, following the ISO 14040 and 14044 standards. The results indicate that the application of LCA to PFAS remediation remains in its infancy and is highly fragmented. Significant methodological variations, including differences in system boundaries and data quality, hinder the comparability and benchmarking of LCA results across studies. To enhance the use of LCA as a decision support tool for environmental assessment, there is a pressing need for methodological harmonization and improved practices. Key areas for improvement include enhancing data quality, reducing uncertainties, and increasing the robustness of PFAS LCAs, thereby enabling more informed and sustainable decision-making in PFAS remediation efforts.","PeriodicalId":11886,"journal":{"name":"Environments","volume":"94 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environments","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/environments11090203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The remediation of environments contaminated with per- and polyfluoroalkyl substances (PFAS) has become a growing priority due to the persistent, bioaccumulative, and toxic characteristics of these compounds. To promote green and sustainable remediation practices, it is crucial to assess and minimize the environmental impacts of PFAS remediation projects through life cycle assessment (LCA) at the early stages of planning. So far, no systematic literature review has been published to assess the current state of the art or identify the challenges associated with applying LCA to PFAS remediation. This article provides a review of the recent literature on LCAs of PFAS remediation, following the ISO 14040 and 14044 standards. The results indicate that the application of LCA to PFAS remediation remains in its infancy and is highly fragmented. Significant methodological variations, including differences in system boundaries and data quality, hinder the comparability and benchmarking of LCA results across studies. To enhance the use of LCA as a decision support tool for environmental assessment, there is a pressing need for methodological harmonization and improved practices. Key areas for improvement include enhancing data quality, reducing uncertainties, and increasing the robustness of PFAS LCAs, thereby enabling more informed and sustainable decision-making in PFAS remediation efforts.