Pure Green Ag–In–Ga–S/Ga–S Quantum Dot Light-Emitting Diodes with Electron Transport Materials Exhibiting Enhanced Luminescence Properties

Genichi Motomura, Satoru Ohisa, Taro Uematsu, Susumu Kuwabata, Tatsuya Kameyama, Tsukasa Torimoto, Yoshihide Fujisaki
{"title":"Pure Green Ag–In–Ga–S/Ga–S Quantum Dot Light-Emitting Diodes with Electron Transport Materials Exhibiting Enhanced Luminescence Properties","authors":"Genichi Motomura,&nbsp;Satoru Ohisa,&nbsp;Taro Uematsu,&nbsp;Susumu Kuwabata,&nbsp;Tatsuya Kameyama,&nbsp;Tsukasa Torimoto,&nbsp;Yoshihide Fujisaki","doi":"10.1002/apxr.202400042","DOIUrl":null,"url":null,"abstract":"<p>Quantum dots (QDs) are essential luminescent materials with applications in wide-color-gamut displays requiring exceptional color reproducibility. Multinary semiconductor QDs composed of groups I, III and VI elements are expected to serve as eco-friendly materials to replace conventional QDs owing to the potential narrow spectral widths and tunable bandgaps of the former. Although optimized Ag–In–Ga–S/Ga–S core/shell QDs (AIGS QDs) have exhibited vibrant green emissions, electroluminescence from QD-based light-emitting diodes (QLEDs) incorporating these AIGS QDs is reduced as a consequence of the effects of defect sites. The present work therefore examines the incorporation of electron transport materials (ETMs) into AIGS QD emitting layers. A device incorporating emitting layers composed of AIGS QDs and 2,4,6-tris(3-(3-pyridyl)phenyl)-1,3,5-triazine (TmPPyTz), with the latter acting as a highly conductive ETM, exhibits a low driving voltage and high efficiency. Furthermore, the addition of two ETMs — TmPPyTz and tris(2,4,6-trimethyl-3-(pyridin-3-yl)phenyl)borane — is found to provide enhanced luminescence properties because these materials are deposited in the emitting layer in different forms and hence has varying effects in terms of improving conductivity and charge balance. The resulting QLEDs have a sharp spectral width of 30 nm, suggesting a level of color purity suitable for wide-color-gamut displays.</p>","PeriodicalId":100035,"journal":{"name":"Advanced Physics Research","volume":"3 10","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/apxr.202400042","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Physics Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/apxr.202400042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum dots (QDs) are essential luminescent materials with applications in wide-color-gamut displays requiring exceptional color reproducibility. Multinary semiconductor QDs composed of groups I, III and VI elements are expected to serve as eco-friendly materials to replace conventional QDs owing to the potential narrow spectral widths and tunable bandgaps of the former. Although optimized Ag–In–Ga–S/Ga–S core/shell QDs (AIGS QDs) have exhibited vibrant green emissions, electroluminescence from QD-based light-emitting diodes (QLEDs) incorporating these AIGS QDs is reduced as a consequence of the effects of defect sites. The present work therefore examines the incorporation of electron transport materials (ETMs) into AIGS QD emitting layers. A device incorporating emitting layers composed of AIGS QDs and 2,4,6-tris(3-(3-pyridyl)phenyl)-1,3,5-triazine (TmPPyTz), with the latter acting as a highly conductive ETM, exhibits a low driving voltage and high efficiency. Furthermore, the addition of two ETMs — TmPPyTz and tris(2,4,6-trimethyl-3-(pyridin-3-yl)phenyl)borane — is found to provide enhanced luminescence properties because these materials are deposited in the emitting layer in different forms and hence has varying effects in terms of improving conductivity and charge balance. The resulting QLEDs have a sharp spectral width of 30 nm, suggesting a level of color purity suitable for wide-color-gamut displays.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
含电子传输材料的纯绿色 Ag-In-Ga-S/Ga-S 量子点发光二极管具有增强的发光特性
量子点(QDs)是一种重要的发光材料,可应用于对色彩再现性要求极高的宽色域显示器。由 I、III 和 VI 族元素组成的二元半导体量子点有望成为替代传统量子点的环保材料,因为前者具有潜在的窄光谱宽度和可调带隙。虽然经过优化的 Ag-In-Ga-S/Ga-S 核/壳 QDs(AIGS QDs)表现出了鲜艳的绿色光芒,但由于缺陷位点的影响,含有这些 AIGS QDs 的基于 QD 的发光二极管(QLED)的电致发光有所减弱。因此,本研究探讨了在 AIGS QD 发光层中加入电子传输材料 (ETM) 的问题。由 AIGS QDs 和 2,4,6-三(3-(3-吡啶基)苯基)-1,3,5-三嗪(TmPPyTz)组成的发射层(TmPPyTz 是一种高导电性 ETM)显示出较低的驱动电压和较高的效率。此外,由于 TmPPyTz 和三(2,4,6-三甲基-3-(吡啶-3-基)苯基)硼烷这两种 ETM 以不同的形式沉积在发光层中,因此在改善导电性和电荷平衡方面具有不同的效果,因此添加这两种 ETM 可以增强发光特性。由此产生的 QLED 具有 30 纳米的锐光谱宽度,表明其色彩纯度适合宽色域显示器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Topological Insulator Nanowires Made by AFM Nanopatterning: Fabrication Process and Ultra Low-Temperature Transport Properties (Adv. Phys. Res. 12/2024) Masthead (Adv. Phys. Res. 12/2024) Epithelial Folding Through Local Degradation of an Elastic Basement Membrane Plate Observation of Thermally Induced Piezomagnetic Switching in Cu2OSeO3 Polymorph Synthesized under High-Pressure (Adv. Phys. Res. 11/2024) Exploring Green Fluorescent Protein Brownian Motion: Temperature and Concentration Dependencies Through Luminescence Thermometry (Adv. Phys. Res. 11/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1