Life cycle assessment of ammonia co-firing power plants: A comprehensive review and analysis from a whole industrial chain perspective

IF 13 Q1 ENERGY & FUELS Advances in Applied Energy Pub Date : 2024-05-20 DOI:10.1016/j.adapen.2024.100178
Hui Kong , Yueqiao Sun , Hongsheng Wang , Jian Wang , Liping Sun , Jun Shen
{"title":"Life cycle assessment of ammonia co-firing power plants: A comprehensive review and analysis from a whole industrial chain perspective","authors":"Hui Kong ,&nbsp;Yueqiao Sun ,&nbsp;Hongsheng Wang ,&nbsp;Jian Wang ,&nbsp;Liping Sun ,&nbsp;Jun Shen","doi":"10.1016/j.adapen.2024.100178","DOIUrl":null,"url":null,"abstract":"<div><p>Ammonia, a reliable low-carbon alternative fuel with energy storage capabilities, has garnered increasing attention for its application of co-firing in coal-fired power plants as a strategy to mitigate direct carbon emissions. However, various types of ammonia production technologies result in diverse economic feasibility and emission intensities. Simultaneously, each stage, spanning from upstream processes such as raw material extraction to downstream applications, contributes to carbon emissions, which cannot be ignored. It is crucial to select the appropriate assessment method to determine the transformation pathways for co-firing systems. To this end, this review presents a comprehensive life cycle assessment of ammonia co-firing systems from a whole industrial chain perspective, encompassing the entire gamut of processes from fuel production and transportation to co-firing. Studies of the industrial chain perspective and of life cycle assessment methodology that are uniquely tailored for co-firing systems are presented. A nuanced exploration of distinct technologies across the spectrum of system processes ensues, including the advantages, limitations, and trends in advancement, based on carbon emissions and economic criteria. Considering the diverse fuel production, especially ammonia, typologies and intricate processes have undergone comprehensive review. The combustion characteristics, emissions, and economic factors associated with the co-firing process are systematically summarized, drawing upon aspects such as dynamics, experiments, simulations, and demonstration projects. This study illuminates the progression and technology selection of co-firing systems across multiple stages of the whole industry chain, thereby furnishing insights relevant to the low-carbon transformation of ammonia co-firing with coal in power plants.</p></div>","PeriodicalId":34615,"journal":{"name":"Advances in Applied Energy","volume":"14 ","pages":"Article 100178"},"PeriodicalIF":13.0000,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666792424000167/pdfft?md5=2eee1ae8953fb0299668fa2c01a83efe&pid=1-s2.0-S2666792424000167-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666792424000167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Ammonia, a reliable low-carbon alternative fuel with energy storage capabilities, has garnered increasing attention for its application of co-firing in coal-fired power plants as a strategy to mitigate direct carbon emissions. However, various types of ammonia production technologies result in diverse economic feasibility and emission intensities. Simultaneously, each stage, spanning from upstream processes such as raw material extraction to downstream applications, contributes to carbon emissions, which cannot be ignored. It is crucial to select the appropriate assessment method to determine the transformation pathways for co-firing systems. To this end, this review presents a comprehensive life cycle assessment of ammonia co-firing systems from a whole industrial chain perspective, encompassing the entire gamut of processes from fuel production and transportation to co-firing. Studies of the industrial chain perspective and of life cycle assessment methodology that are uniquely tailored for co-firing systems are presented. A nuanced exploration of distinct technologies across the spectrum of system processes ensues, including the advantages, limitations, and trends in advancement, based on carbon emissions and economic criteria. Considering the diverse fuel production, especially ammonia, typologies and intricate processes have undergone comprehensive review. The combustion characteristics, emissions, and economic factors associated with the co-firing process are systematically summarized, drawing upon aspects such as dynamics, experiments, simulations, and demonstration projects. This study illuminates the progression and technology selection of co-firing systems across multiple stages of the whole industry chain, thereby furnishing insights relevant to the low-carbon transformation of ammonia co-firing with coal in power plants.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
氨联合燃烧发电厂的生命周期评估:从全产业链角度进行全面审查和分析
氨是一种可靠的低碳替代燃料,具有储能功能,在燃煤电厂中作为一种减少直接碳排放的战略,其联合燃烧的应用日益受到关注。然而,各种类型的合成氨生产技术导致了不同的经济可行性和排放强度。同时,从原材料提取等上游工艺到下游应用,每个阶段都会造成碳排放,这一点不容忽视。选择适当的评估方法来确定联合燃烧系统的转化途径至关重要。为此,本综述从整个产业链的角度对氨气联合燃烧系统进行了全面的生命周期评估,包括从燃料生产、运输到联合燃烧的整个过程。文中介绍了对产业链视角和生命周期评估方法的研究,这些都是为联合燃烧系统量身定制的。随后,根据碳排放和经济标准,对整个系统过程中的不同技术进行了细致的探讨,包括优势、局限性和发展趋势。考虑到燃料生产的多样性,特别是氨的生产,对类型和复杂工艺进行了全面审查。通过动态、实验、模拟和示范项目等方面,系统地总结了与联合燃烧工艺相关的燃烧特性、排放和经济因素。这项研究揭示了整个产业链多个阶段中联合燃烧系统的发展和技术选择,从而为电厂氨与煤联合燃烧的低碳转型提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advances in Applied Energy
Advances in Applied Energy Energy-General Energy
CiteScore
23.90
自引率
0.00%
发文量
36
审稿时长
21 days
期刊最新文献
Digitalization of urban multi-energy systems – Advances in digital twin applications across life-cycle phases Multi-scale electricity consumption prediction model based on land use and interpretable machine learning: A case study of China Green light for bidirectional charging? Unveiling grid repercussions and life cycle impacts Hydrogen production via solid oxide electrolysis: Balancing environmental issues and material criticality MANGOever: An optimization framework for the long-term planning and operations of integrated electric vehicle and building energy systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1