{"title":"Processing of clinical notes for efficient diagnosis with feedback attention-based BiLSTM.","authors":"Nitalaksheswara Rao Kolukula, Sreekanth Puli, Chandaka Babi, Rajendra Prasad Kalapala, Gandhi Ongole, Venkata Murali Krishna Chinta","doi":"10.1007/s11517-024-03126-8","DOIUrl":null,"url":null,"abstract":"<p><p>Predicting a patient's future health state through the analysis of their clinical records is an emerging area in the field of intelligent medicine. It has the potential to assist healthcare professionals in prescribing treatments safely, making more accurate diagnoses, and improving patient care. However, clinical notes have been underutilized due to their complexity, high dimensionality, and sparsity. Nevertheless, these clinical records hold significant promise for enhancing clinical decision. To tackle these problems, a novel feedback attention-based bidirectional long short-term memory (FABiLSTM) model has been proposed for more effective diagnosis using clinical records. This model incorporates PubMedBERT for filtering irrelevant information, enhances global vector word embeddings for numerical representations and K-means clustering, and performs to explore term frequency and inverse document frequency intricacies. The proposed approach excels in capturing information, aiding accurate disease prediction. The predictive capability is further enhanced with the help of a billiards-inspired optimization algorithm. The effectiveness of the FABiLSTM method has been assessed with the MIMIC-III dataset, yielding impressive results in accuracy, precision, F1 score, and recall score of 98.52%, 98%, 98.2%, and 98.2% individually. These results reveal ways in which the proposed technique excels in comparison with current practices.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-024-03126-8","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/27 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Predicting a patient's future health state through the analysis of their clinical records is an emerging area in the field of intelligent medicine. It has the potential to assist healthcare professionals in prescribing treatments safely, making more accurate diagnoses, and improving patient care. However, clinical notes have been underutilized due to their complexity, high dimensionality, and sparsity. Nevertheless, these clinical records hold significant promise for enhancing clinical decision. To tackle these problems, a novel feedback attention-based bidirectional long short-term memory (FABiLSTM) model has been proposed for more effective diagnosis using clinical records. This model incorporates PubMedBERT for filtering irrelevant information, enhances global vector word embeddings for numerical representations and K-means clustering, and performs to explore term frequency and inverse document frequency intricacies. The proposed approach excels in capturing information, aiding accurate disease prediction. The predictive capability is further enhanced with the help of a billiards-inspired optimization algorithm. The effectiveness of the FABiLSTM method has been assessed with the MIMIC-III dataset, yielding impressive results in accuracy, precision, F1 score, and recall score of 98.52%, 98%, 98.2%, and 98.2% individually. These results reveal ways in which the proposed technique excels in comparison with current practices.
期刊介绍:
Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging.
MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field.
MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).