Zhengxin Tu, Jinghua Xu, Zhenyu Dong, Shuyou Zhang, Jianrong Tan
{"title":"Load-bearing optimization for customized exoskeleton design based on kinematic gait reconstruction.","authors":"Zhengxin Tu, Jinghua Xu, Zhenyu Dong, Shuyou Zhang, Jianrong Tan","doi":"10.1007/s11517-024-03234-5","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents a load-bearing optimization method for customized exoskeleton design based on kinematic gait reconstruction (KGR). For people with acute joint injury, it is no longer probable to obtain the movement gait via computer vision. With this in mind, the 3D reconstruction can be executed from the CT (computed tomography) or MRI (magnetic resonance imaging) of the injured area, in order to generate micro-morphology of the joint occlusion. Innovatively, the disconnected entities can be registered into a whole by surface topography matching with semi-definite computing, further implementing KGR by rebuilding continuous kinematic skeletal flexion postures. To verify the effectiveness of reconstructed kinematic gait, finite element analysis (FEA) is conducted via Hertz contact theory. The lower limb exoskeleton is taken as a verification instance, where rod length ratio and angular rotation range can be set as the design considerations, so as to optimize the load-bearing parameters, which is suitable for individual kinematic gaits. The instance demonstrates that the proposed KGR helps to provide a design paradigm for optimizing load-bearing capacity, on the basis of which the ergonomic customized exoskeleton can be designed from merely medical images, thereby making it more suitable for the large rehabilitation population.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-024-03234-5","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a load-bearing optimization method for customized exoskeleton design based on kinematic gait reconstruction (KGR). For people with acute joint injury, it is no longer probable to obtain the movement gait via computer vision. With this in mind, the 3D reconstruction can be executed from the CT (computed tomography) or MRI (magnetic resonance imaging) of the injured area, in order to generate micro-morphology of the joint occlusion. Innovatively, the disconnected entities can be registered into a whole by surface topography matching with semi-definite computing, further implementing KGR by rebuilding continuous kinematic skeletal flexion postures. To verify the effectiveness of reconstructed kinematic gait, finite element analysis (FEA) is conducted via Hertz contact theory. The lower limb exoskeleton is taken as a verification instance, where rod length ratio and angular rotation range can be set as the design considerations, so as to optimize the load-bearing parameters, which is suitable for individual kinematic gaits. The instance demonstrates that the proposed KGR helps to provide a design paradigm for optimizing load-bearing capacity, on the basis of which the ergonomic customized exoskeleton can be designed from merely medical images, thereby making it more suitable for the large rehabilitation population.
期刊介绍:
Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging.
MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field.
MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).