{"title":"Extending the CWM approach to intraspecific trait variation: how to deal with overly optimistic standard tests?","authors":"David Zelený, Kenny Helsen, Yi-Nuo Lee","doi":"10.1007/s00442-024-05568-1","DOIUrl":null,"url":null,"abstract":"<p><p>Community weighted means (CWMs) are widely used to study the relationship between community-level functional traits and environment. For certain null hypotheses, CWM-environment relationships assessed by linear regression or ANOVA and tested by standard parametric tests are prone to inflated Type I error rates. Previous research has found that this problem can be solved by permutation tests (i.e., the max test). A recent extension of the CWM approach allows the inclusion of intraspecific trait variation (ITV) by the separate calculation of fixed, site-specific, and intraspecific CWMs. The question is whether the same Type I error rate inflation exists for the relationship between environment and site-specific or intraspecific CWM. Using simulated and real-world community datasets, we show that site-specific CWM-environment relationships have also inflated Type I error rate, and this rate is negatively related to the relative ITV magnitude. In contrast, for intraspecific CWM-environment relationships, standard parametric tests have the correct Type I error rate, although somewhat reduced statistical power. We introduce an ITV-extended version of the max test, which can solve the inflation problem for site-specific CWM-environment relationships and, without considering ITV, becomes equivalent to the \"original\" max test used for the CWM approach. We show that this new ITV-extended max test works well across the full possible magnitude of ITV on both simulated and real-world data. Most real datasets probably do not have intraspecific trait variation large enough to alleviate the problem of inflated Type I error rate, and published studies possibly report overly optimistic significance results.</p>","PeriodicalId":19473,"journal":{"name":"Oecologia","volume":" ","pages":"257-269"},"PeriodicalIF":2.3000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oecologia","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s00442-024-05568-1","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/28 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Community weighted means (CWMs) are widely used to study the relationship between community-level functional traits and environment. For certain null hypotheses, CWM-environment relationships assessed by linear regression or ANOVA and tested by standard parametric tests are prone to inflated Type I error rates. Previous research has found that this problem can be solved by permutation tests (i.e., the max test). A recent extension of the CWM approach allows the inclusion of intraspecific trait variation (ITV) by the separate calculation of fixed, site-specific, and intraspecific CWMs. The question is whether the same Type I error rate inflation exists for the relationship between environment and site-specific or intraspecific CWM. Using simulated and real-world community datasets, we show that site-specific CWM-environment relationships have also inflated Type I error rate, and this rate is negatively related to the relative ITV magnitude. In contrast, for intraspecific CWM-environment relationships, standard parametric tests have the correct Type I error rate, although somewhat reduced statistical power. We introduce an ITV-extended version of the max test, which can solve the inflation problem for site-specific CWM-environment relationships and, without considering ITV, becomes equivalent to the "original" max test used for the CWM approach. We show that this new ITV-extended max test works well across the full possible magnitude of ITV on both simulated and real-world data. Most real datasets probably do not have intraspecific trait variation large enough to alleviate the problem of inflated Type I error rate, and published studies possibly report overly optimistic significance results.
期刊介绍:
Oecologia publishes innovative ecological research of international interest. We seek reviews, advances in methodology, and original contributions, emphasizing the following areas:
Population ecology, Plant-microbe-animal interactions, Ecosystem ecology, Community ecology, Global change ecology, Conservation ecology,
Behavioral ecology and Physiological Ecology.
In general, studies that are purely descriptive, mathematical, documentary, and/or natural history will not be considered.