{"title":"Gene cluster cehBDEF is responsible for the conversion of 1,2-dihydroxynaphthalene to salicylate in Rhizobium sp. strain X9","authors":"Yidong Zhou , Hongfei Liu , Zhenyang Shen , Wenbin Chang , Baiyang Zhang , Chunli Xia , Mingliang Zhang , Qing Hong","doi":"10.1016/j.ibiod.2024.105818","DOIUrl":null,"url":null,"abstract":"<div><p><em>Rhizobium</em> sp. strain X9 was able to degrade 1-naphthol via 1,2-dihydroxynaphthalene (1,2-DHN), salicylate and gentisate. We have identified the two component hydroxylase gene <em>cehC1C2</em> (responsible for the conversion of 1-naphthol to 1,2-DHN) and genes <em>cehG</em>, <em>cehH</em>, and <em>cehI</em> involved in CoA dependent hydroxylation reaction (conversion of salicylate to gentisate). However, the other genes involved in the degradation pathway (from 1,2-DHN to salicylate) have not been identified yet. In this study, the <em>cehBDEF</em> gene cluster organized in the same operon was identified to be involved in the degradation of 1,2-DHN to salicylate. CehB was a novel 1,2-DHN dioxygenase that catalyzes 1,2-DHN to 2-hydroxychromene-2-carboxylate (HCCA), sharing only 28.2% amino acid identity with catechol 2,3-dioxygenase (P31003). CehD, cehE and CehF were conserved with the previously reported corresponding enzymes in 1-naphthol degradation (identity >60%). They are responsible for the successive conversion of HCCA to salicylate. The current study fills in the gap of the genes involved in the 1-naphthol degradation in strain X9.</p></div>","PeriodicalId":13643,"journal":{"name":"International Biodeterioration & Biodegradation","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Biodeterioration & Biodegradation","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0964830524000891","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Rhizobium sp. strain X9 was able to degrade 1-naphthol via 1,2-dihydroxynaphthalene (1,2-DHN), salicylate and gentisate. We have identified the two component hydroxylase gene cehC1C2 (responsible for the conversion of 1-naphthol to 1,2-DHN) and genes cehG, cehH, and cehI involved in CoA dependent hydroxylation reaction (conversion of salicylate to gentisate). However, the other genes involved in the degradation pathway (from 1,2-DHN to salicylate) have not been identified yet. In this study, the cehBDEF gene cluster organized in the same operon was identified to be involved in the degradation of 1,2-DHN to salicylate. CehB was a novel 1,2-DHN dioxygenase that catalyzes 1,2-DHN to 2-hydroxychromene-2-carboxylate (HCCA), sharing only 28.2% amino acid identity with catechol 2,3-dioxygenase (P31003). CehD, cehE and CehF were conserved with the previously reported corresponding enzymes in 1-naphthol degradation (identity >60%). They are responsible for the successive conversion of HCCA to salicylate. The current study fills in the gap of the genes involved in the 1-naphthol degradation in strain X9.
期刊介绍:
International Biodeterioration and Biodegradation publishes original research papers and reviews on the biological causes of deterioration or degradation.