Synergistic effect of co-sputtered tungsten-titanium nitride as electrode material for efficient hybrid supercapacitors

IF 3 4区 材料科学 Q3 CHEMISTRY, PHYSICAL Solid State Ionics Pub Date : 2024-05-29 DOI:10.1016/j.ssi.2024.116574
Hamid Ali , Muhammad Zahir Iqbal , Asma Khizar , Md Rezaul Karim , Chang-Hyung Choi , Saikh Mohammad Wabaidur
{"title":"Synergistic effect of co-sputtered tungsten-titanium nitride as electrode material for efficient hybrid supercapacitors","authors":"Hamid Ali ,&nbsp;Muhammad Zahir Iqbal ,&nbsp;Asma Khizar ,&nbsp;Md Rezaul Karim ,&nbsp;Chang-Hyung Choi ,&nbsp;Saikh Mohammad Wabaidur","doi":"10.1016/j.ssi.2024.116574","DOIUrl":null,"url":null,"abstract":"<div><p>The dawn of bimetallic transition metal nitrides has attracted considerable interest as battery grade electrode material for potential energy storage applications. In addition, it is essential to investigate binder-free processes to improve the performance of the fabricated electrodes. In this study, binder-free tungsten‑titanium nitrides (W-TiN) are deposited through RF/DC magnetron co-sputtering onto the conducting nickel foam (NF). SEM, EDX and X-ray diffraction are exploited to investigate surface morphology, elemental composition, and structural properties of sputtered materials. The W-TiN electrodes are characterized through electrochemical investigation in half-cell configuration. The tested W-TiN electrode is further utilized with activated carbon (AC) electrode to develop hybrid supercapacitor device W-TiN//AC. The hybrid device revealed a maximum energy density (E<sub>s</sub>) of 88.8 Wh/kg and power density (P<sub>s</sub>) 1700 W /kg. To further understand the mechanism of hybrid devices, the capacitive and diffusive contributions are computed using linear and quadradic models. This study provides a new direction to integrate co-sputtered binder-free electrode materials and devices for large scale production of advanced hybrid energy storage devices.</p></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"412 ","pages":"Article 116574"},"PeriodicalIF":3.0000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Ionics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016727382400122X","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The dawn of bimetallic transition metal nitrides has attracted considerable interest as battery grade electrode material for potential energy storage applications. In addition, it is essential to investigate binder-free processes to improve the performance of the fabricated electrodes. In this study, binder-free tungsten‑titanium nitrides (W-TiN) are deposited through RF/DC magnetron co-sputtering onto the conducting nickel foam (NF). SEM, EDX and X-ray diffraction are exploited to investigate surface morphology, elemental composition, and structural properties of sputtered materials. The W-TiN electrodes are characterized through electrochemical investigation in half-cell configuration. The tested W-TiN electrode is further utilized with activated carbon (AC) electrode to develop hybrid supercapacitor device W-TiN//AC. The hybrid device revealed a maximum energy density (Es) of 88.8 Wh/kg and power density (Ps) 1700 W /kg. To further understand the mechanism of hybrid devices, the capacitive and diffusive contributions are computed using linear and quadradic models. This study provides a new direction to integrate co-sputtered binder-free electrode materials and devices for large scale production of advanced hybrid energy storage devices.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
氮化钨-氮化钛共溅镀电极材料对高效混合超级电容器的协同效应
作为潜在储能应用的电池级电极材料,双金属过渡金属氮化物的出现引起了人们的极大兴趣。此外,研究无粘结剂工艺以提高所制造电极的性能也至关重要。在本研究中,通过射频/直流磁控共溅射将无粘结剂的氮化钨(W-TiN)沉积到导电泡沫镍(NF)上。利用 SEM、EDX 和 X 射线衍射来研究溅射材料的表面形貌、元素组成和结构特性。在半电池配置下,通过电化学研究对 W-TiN 电极进行了表征。经过测试的 W-TiN 电极进一步与活性碳(AC)电极配合使用,开发出了 W-TiN//AC 混合超级电容器装置。该混合装置的最大能量密度(Es)为 88.8 Wh/kg,功率密度(Ps)为 1700 W/kg。为了进一步了解混合装置的机理,我们使用线性和四维模型计算了电容和扩散贡献。这项研究为整合共溅镀无粘结剂电极材料和设备,以大规模生产先进的混合储能设备提供了新的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Solid State Ionics
Solid State Ionics 物理-物理:凝聚态物理
CiteScore
6.10
自引率
3.10%
发文量
152
审稿时长
58 days
期刊介绍: This interdisciplinary journal is devoted to the physics, chemistry and materials science of diffusion, mass transport, and reactivity of solids. The major part of each issue is devoted to articles on: (i) physics and chemistry of defects in solids; (ii) reactions in and on solids, e.g. intercalation, corrosion, oxidation, sintering; (iii) ion transport measurements, mechanisms and theory; (iv) solid state electrochemistry; (v) ionically-electronically mixed conducting solids. Related technological applications are also included, provided their characteristics are interpreted in terms of the basic solid state properties. Review papers and relevant symposium proceedings are welcome.
期刊最新文献
Editorial Board Enhancing ionic conductivity of LiSiPON thin films electrolytes: Overcoming synthesis challenges related to Li-migration in the precursor target Preface "Special Issue for the 21st International Conference on Solid State Protonic Conductors (SSPC-21)" Enhancing cycling stability in Li-rich layered oxides by atomic layer deposition of LiNbO3 nanolayers Performance improvement tactics of sensitized solar cells based on CuInS2 quantum dots prepared by high temperature hot injection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1