Hamid Ali , Muhammad Zahir Iqbal , Asma Khizar , Md Rezaul Karim , Chang-Hyung Choi , Saikh Mohammad Wabaidur
{"title":"Synergistic effect of co-sputtered tungsten-titanium nitride as electrode material for efficient hybrid supercapacitors","authors":"Hamid Ali , Muhammad Zahir Iqbal , Asma Khizar , Md Rezaul Karim , Chang-Hyung Choi , Saikh Mohammad Wabaidur","doi":"10.1016/j.ssi.2024.116574","DOIUrl":null,"url":null,"abstract":"<div><p>The dawn of bimetallic transition metal nitrides has attracted considerable interest as battery grade electrode material for potential energy storage applications. In addition, it is essential to investigate binder-free processes to improve the performance of the fabricated electrodes. In this study, binder-free tungsten‑titanium nitrides (W-TiN) are deposited through RF/DC magnetron co-sputtering onto the conducting nickel foam (NF). SEM, EDX and X-ray diffraction are exploited to investigate surface morphology, elemental composition, and structural properties of sputtered materials. The W-TiN electrodes are characterized through electrochemical investigation in half-cell configuration. The tested W-TiN electrode is further utilized with activated carbon (AC) electrode to develop hybrid supercapacitor device W-TiN//AC. The hybrid device revealed a maximum energy density (E<sub>s</sub>) of 88.8 Wh/kg and power density (P<sub>s</sub>) 1700 W /kg. To further understand the mechanism of hybrid devices, the capacitive and diffusive contributions are computed using linear and quadradic models. This study provides a new direction to integrate co-sputtered binder-free electrode materials and devices for large scale production of advanced hybrid energy storage devices.</p></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"412 ","pages":"Article 116574"},"PeriodicalIF":3.0000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Ionics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016727382400122X","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The dawn of bimetallic transition metal nitrides has attracted considerable interest as battery grade electrode material for potential energy storage applications. In addition, it is essential to investigate binder-free processes to improve the performance of the fabricated electrodes. In this study, binder-free tungsten‑titanium nitrides (W-TiN) are deposited through RF/DC magnetron co-sputtering onto the conducting nickel foam (NF). SEM, EDX and X-ray diffraction are exploited to investigate surface morphology, elemental composition, and structural properties of sputtered materials. The W-TiN electrodes are characterized through electrochemical investigation in half-cell configuration. The tested W-TiN electrode is further utilized with activated carbon (AC) electrode to develop hybrid supercapacitor device W-TiN//AC. The hybrid device revealed a maximum energy density (Es) of 88.8 Wh/kg and power density (Ps) 1700 W /kg. To further understand the mechanism of hybrid devices, the capacitive and diffusive contributions are computed using linear and quadradic models. This study provides a new direction to integrate co-sputtered binder-free electrode materials and devices for large scale production of advanced hybrid energy storage devices.
期刊介绍:
This interdisciplinary journal is devoted to the physics, chemistry and materials science of diffusion, mass transport, and reactivity of solids. The major part of each issue is devoted to articles on:
(i) physics and chemistry of defects in solids;
(ii) reactions in and on solids, e.g. intercalation, corrosion, oxidation, sintering;
(iii) ion transport measurements, mechanisms and theory;
(iv) solid state electrochemistry;
(v) ionically-electronically mixed conducting solids.
Related technological applications are also included, provided their characteristics are interpreted in terms of the basic solid state properties.
Review papers and relevant symposium proceedings are welcome.