Dilruba A. Popy, Yashpal Singh, Yauhen Tratsiak, Abby M. Cardoza, John M. Lane, Luis Stand, Mariya Zhuravleva, Neeraj Rai, Bayram Saparov
{"title":"Stimuli-responsive photoluminescent copper(I) halides for scintillation, anticounterfeiting, and light-emitting diode applications","authors":"Dilruba A. Popy, Yashpal Singh, Yauhen Tratsiak, Abby M. Cardoza, John M. Lane, Luis Stand, Mariya Zhuravleva, Neeraj Rai, Bayram Saparov","doi":"10.1002/agt2.602","DOIUrl":null,"url":null,"abstract":"<p>Highly sensitive stimuli-responsive luminescent materials are crucial for applications in optical sensing, security, and anticounterfeiting. Here, we report two zero-dimensional (0D) copper(I) halides, (TEP)<sub>2</sub>Cu<sub>2</sub>Br<sub>4</sub>, (TEP)<sub>2</sub>Cu<sub>4</sub>Br<sub>6</sub>, and 1D (TEP)<sub>3</sub>Ag<sub>6</sub>Br<sub>9</sub>, which are comprised of isolated [Cu<sub>2</sub>Br<sub>4</sub>]<sup>2−</sup>, [Cu<sub>4</sub>Br<sub>6</sub>]<sup>2−</sup>, and [Ag<sub>6</sub>Br<sub>9</sub>]<sup>3−</sup> polyanions, respectively, separated by TEP<sup>+</sup> (tetraethylphosphonium [TEP]) cations. (TEP)<sub>2</sub>Cu<sub>2</sub>Br<sub>4</sub> and (TEP)<sub>2</sub>Cu<sub>4</sub>Br<sub>6</sub> demonstrate greenish-white and orange-red emissions, respectively, with near unity photoluminescence quantum yields, while (TEP)<sub>3</sub>Ag<sub>6</sub>Br<sub>9</sub> is a poor light emitter. Optical spectroscopy measurements and density-functional theory calculations reveal that photoemissions of these compounds originate from self-trapped excitons due to the excited-state distortions in the copper(I) halide units. Crystals of Cu(I) halides are radioluminescence active at room temperature under both X- and γ-rays exposure. The light yields up to 15,800 ph/MeV under 662 keV γ-rays of <sup>137</sup>Cs suggesting their potential for scintillation applications. Remarkably, (TEP)<sub>2</sub>Cu<sub>2</sub>Br<sub>4</sub> and (TEP)<sub>2</sub>Cu<sub>4</sub>Br<sub>6</sub> are interconvertible through chemical stimuli or reverse crystallization. In addition, both compounds demonstrate luminescence on-off switching upon thermal stimuli. The sensitivity of (TEP)<sub>2</sub>Cu<sub>2</sub>Br<sub>4</sub> and (TEP)<sub>2</sub>Cu<sub>4</sub>Br<sub>6</sub> to the chemical and thermal stimuli coupled with their ultrabright emission allows their consideration for applications such as solid-state lighting, sensing, information storage, and anticounterfeiting.</p>","PeriodicalId":72127,"journal":{"name":"Aggregate (Hoboken, N.J.)","volume":"5 5","pages":""},"PeriodicalIF":13.9000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agt2.602","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aggregate (Hoboken, N.J.)","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/agt2.602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Highly sensitive stimuli-responsive luminescent materials are crucial for applications in optical sensing, security, and anticounterfeiting. Here, we report two zero-dimensional (0D) copper(I) halides, (TEP)2Cu2Br4, (TEP)2Cu4Br6, and 1D (TEP)3Ag6Br9, which are comprised of isolated [Cu2Br4]2−, [Cu4Br6]2−, and [Ag6Br9]3− polyanions, respectively, separated by TEP+ (tetraethylphosphonium [TEP]) cations. (TEP)2Cu2Br4 and (TEP)2Cu4Br6 demonstrate greenish-white and orange-red emissions, respectively, with near unity photoluminescence quantum yields, while (TEP)3Ag6Br9 is a poor light emitter. Optical spectroscopy measurements and density-functional theory calculations reveal that photoemissions of these compounds originate from self-trapped excitons due to the excited-state distortions in the copper(I) halide units. Crystals of Cu(I) halides are radioluminescence active at room temperature under both X- and γ-rays exposure. The light yields up to 15,800 ph/MeV under 662 keV γ-rays of 137Cs suggesting their potential for scintillation applications. Remarkably, (TEP)2Cu2Br4 and (TEP)2Cu4Br6 are interconvertible through chemical stimuli or reverse crystallization. In addition, both compounds demonstrate luminescence on-off switching upon thermal stimuli. The sensitivity of (TEP)2Cu2Br4 and (TEP)2Cu4Br6 to the chemical and thermal stimuli coupled with their ultrabright emission allows their consideration for applications such as solid-state lighting, sensing, information storage, and anticounterfeiting.