Laura P. Nicholson, Elizabeth C. Braun de Torrez, Holly K. Ober
{"title":"Wetland restoration enhances habitat for an endangered bat, Eumops floridanus","authors":"Laura P. Nicholson, Elizabeth C. Braun de Torrez, Holly K. Ober","doi":"10.1111/rec.14200","DOIUrl":null,"url":null,"abstract":"Restoring lost or degraded wetlands is a major challenge in contemporary conservation. Understanding how wetland restoration and changes in hydrology affect wildlife is increasingly urgent for endangered species conservation. This is especially pertinent for the endangered Florida bonneted bat (<jats:italic>Eumops floridanus</jats:italic>), whose range is almost entirely contained within one of the world's most iconic wetland systems, the Greater Everglades Ecosystem. We investigated how <jats:italic>E. floridanus</jats:italic> may respond to future hydrological and vegetation changes associated with current and planned Everglades hydrologic restoration efforts. We conducted acoustic surveys at 194 random points stratified across a restoration gradient (no hydrologic restoration, partial hydrologic restoration, full hydrologic restoration, and reference). Using generalized linear mixed models, we determined the most important predictors explaining variation in bat activity and foraging likelihood. Positive associations between bat activity and several hydrologic variables expected to increase with restoration (hydroperiod, water depth, distance to canals, and extent of freshwater forested wetlands, ecologically intact reference areas, and zones with full hydrological restoration) suggest that foraging habitat for this species will likely benefit from hydrologic restoration both in the near term (immediate increases in hydroperiod and water depth) and in the longer term (as freshwater forested wetlands expand). Our results inform immediate management decisions for this species and suggest the benefits of restoration for wildlife adapted to historically longer hydroperiods and greater water depths, which are anticipated to increase with the gradual return of natural hydrological regimes.","PeriodicalId":54487,"journal":{"name":"Restoration Ecology","volume":"73 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Restoration Ecology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/rec.14200","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Restoring lost or degraded wetlands is a major challenge in contemporary conservation. Understanding how wetland restoration and changes in hydrology affect wildlife is increasingly urgent for endangered species conservation. This is especially pertinent for the endangered Florida bonneted bat (Eumops floridanus), whose range is almost entirely contained within one of the world's most iconic wetland systems, the Greater Everglades Ecosystem. We investigated how E. floridanus may respond to future hydrological and vegetation changes associated with current and planned Everglades hydrologic restoration efforts. We conducted acoustic surveys at 194 random points stratified across a restoration gradient (no hydrologic restoration, partial hydrologic restoration, full hydrologic restoration, and reference). Using generalized linear mixed models, we determined the most important predictors explaining variation in bat activity and foraging likelihood. Positive associations between bat activity and several hydrologic variables expected to increase with restoration (hydroperiod, water depth, distance to canals, and extent of freshwater forested wetlands, ecologically intact reference areas, and zones with full hydrological restoration) suggest that foraging habitat for this species will likely benefit from hydrologic restoration both in the near term (immediate increases in hydroperiod and water depth) and in the longer term (as freshwater forested wetlands expand). Our results inform immediate management decisions for this species and suggest the benefits of restoration for wildlife adapted to historically longer hydroperiods and greater water depths, which are anticipated to increase with the gradual return of natural hydrological regimes.
期刊介绍:
Restoration Ecology fosters the exchange of ideas among the many disciplines involved with ecological restoration. Addressing global concerns and communicating them to the international research community and restoration practitioners, the journal is at the forefront of a vital new direction in science, ecology, and policy. Original papers describe experimental, observational, and theoretical studies on terrestrial, marine, and freshwater systems, and are considered without taxonomic bias. Contributions span the natural sciences, including ecological and biological aspects, as well as the restoration of soil, air and water when set in an ecological context; and the social sciences, including cultural, philosophical, political, educational, economic and historical aspects. Edited by a distinguished panel, the journal continues to be a major conduit for researchers to publish their findings in the fight to not only halt ecological damage, but also to ultimately reverse it.