{"title":"Does decline and recovery process affect clonal and genetic diversity of a coastal plant population?","authors":"Yoshihiro Tsunamoto, Yoko Nishikawa, Takashi Shimamura, Yoshihisa Suyama, Ayumi Matsuo","doi":"10.1111/rec.14283","DOIUrl":null,"url":null,"abstract":"The evaluation of genetic diversity is important for the conservation of species. However, changes in genetic diversity during conservation are complex processes that depend on the characteristics of the species and environment. To evaluate the changes in genetic diversity from decline to recovery, we surveyed the coastal herb <jats:italic>Calystegia soldanella</jats:italic> in areas with varying degrees of non‐coastal plant invasion. First, to evaluate genetic diversity before the conservation measures, the spatial clonal structure of adults was investigated in a population invaded by non‐coastal plants. Second, to evaluate genetic diversity after the conservation measures, the regenerated individuals were investigated in the restoration plot. Moreover, to predict future genetic diversity without conservation measures, the effects of non‐coastal plant invasion on the production and genetic diversity of seeds were investigated using individuals from areas with various levels of non‐coastal plant invasion. In the adult population, 16 genets were identified in an 80 m × 4 m area. The maximum genet size was 30.3 m, suggesting the importance of clonal reproduction for population maintenance. In the restoration plots comprising 10 m × 10 m × 3 replicates, many seedlings (1.14 ramets/m<jats:sup>2</jats:sup>) emerged, resulting in high clonal diversity compared to that of the adult population. Therefore, the biomass and genetic diversity were rapidly restored at the beginning of the conservation practice. Non‐coastal plant invasion did not affect the genetic diversity of the seeds. However, it significantly reduced seed production. This suggests that non‐coastal plant invasion reduces sexual reproduction, resulting in the long‐term loss of genetic diversity.","PeriodicalId":54487,"journal":{"name":"Restoration Ecology","volume":null,"pages":null},"PeriodicalIF":2.8000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Restoration Ecology","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1111/rec.14283","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The evaluation of genetic diversity is important for the conservation of species. However, changes in genetic diversity during conservation are complex processes that depend on the characteristics of the species and environment. To evaluate the changes in genetic diversity from decline to recovery, we surveyed the coastal herb Calystegia soldanella in areas with varying degrees of non‐coastal plant invasion. First, to evaluate genetic diversity before the conservation measures, the spatial clonal structure of adults was investigated in a population invaded by non‐coastal plants. Second, to evaluate genetic diversity after the conservation measures, the regenerated individuals were investigated in the restoration plot. Moreover, to predict future genetic diversity without conservation measures, the effects of non‐coastal plant invasion on the production and genetic diversity of seeds were investigated using individuals from areas with various levels of non‐coastal plant invasion. In the adult population, 16 genets were identified in an 80 m × 4 m area. The maximum genet size was 30.3 m, suggesting the importance of clonal reproduction for population maintenance. In the restoration plots comprising 10 m × 10 m × 3 replicates, many seedlings (1.14 ramets/m2) emerged, resulting in high clonal diversity compared to that of the adult population. Therefore, the biomass and genetic diversity were rapidly restored at the beginning of the conservation practice. Non‐coastal plant invasion did not affect the genetic diversity of the seeds. However, it significantly reduced seed production. This suggests that non‐coastal plant invasion reduces sexual reproduction, resulting in the long‐term loss of genetic diversity.
期刊介绍:
Restoration Ecology fosters the exchange of ideas among the many disciplines involved with ecological restoration. Addressing global concerns and communicating them to the international research community and restoration practitioners, the journal is at the forefront of a vital new direction in science, ecology, and policy. Original papers describe experimental, observational, and theoretical studies on terrestrial, marine, and freshwater systems, and are considered without taxonomic bias. Contributions span the natural sciences, including ecological and biological aspects, as well as the restoration of soil, air and water when set in an ecological context; and the social sciences, including cultural, philosophical, political, educational, economic and historical aspects. Edited by a distinguished panel, the journal continues to be a major conduit for researchers to publish their findings in the fight to not only halt ecological damage, but also to ultimately reverse it.