{"title":"IDENTIFICATION AND STATISTICAL DECISION THEORY","authors":"Charles F. Manski","doi":"10.1017/s0266466624000197","DOIUrl":null,"url":null,"abstract":"Econometricians have usefully separated study of estimation into identification and statistical components. Identification analysis, which assumes knowledge of the probability distribution generating observable data, places an upper bound on what may be learned about population parameters of interest with finite-sample data. Yet Wald’s statistical decision theory studies decision-making with sample data without reference to identification, indeed without reference to estimation. This paper asks if identification analysis is useful to statistical decision theory. The answer is positive, as it can yield an informative and tractable upper bound on the achievable finite-sample performance of decision criteria. The reasoning is simple when the decision-relevant parameter (true state of nature) is point-identified. It is more delicate when the true state is partially identified and a decision must be made under ambiguity. Then the performance of some criteria, such as minimax regret, is enhanced by randomizing choice of an action in a controlled manner. I find it useful to recast choice of a statistical decision function as selection of choice probabilities for the elements of the choice set.","PeriodicalId":49275,"journal":{"name":"Econometric Theory","volume":"64 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Theory","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1017/s0266466624000197","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Econometricians have usefully separated study of estimation into identification and statistical components. Identification analysis, which assumes knowledge of the probability distribution generating observable data, places an upper bound on what may be learned about population parameters of interest with finite-sample data. Yet Wald’s statistical decision theory studies decision-making with sample data without reference to identification, indeed without reference to estimation. This paper asks if identification analysis is useful to statistical decision theory. The answer is positive, as it can yield an informative and tractable upper bound on the achievable finite-sample performance of decision criteria. The reasoning is simple when the decision-relevant parameter (true state of nature) is point-identified. It is more delicate when the true state is partially identified and a decision must be made under ambiguity. Then the performance of some criteria, such as minimax regret, is enhanced by randomizing choice of an action in a controlled manner. I find it useful to recast choice of a statistical decision function as selection of choice probabilities for the elements of the choice set.
Econometric TheoryMATHEMATICS, INTERDISCIPLINARY APPLICATIONS-STATISTICS & PROBABILITY
CiteScore
1.90
自引率
0.00%
发文量
52
审稿时长
>12 weeks
期刊介绍:
Since its inception, Econometric Theory has aimed to endow econometrics with an innovative journal dedicated to advance theoretical research in econometrics. It provides a centralized professional outlet for original theoretical contributions in all of the major areas of econometrics, and all fields of research in econometric theory fall within the scope of ET. In addition, ET fosters the multidisciplinary features of econometrics that extend beyond economics. Particularly welcome are articles that promote original econometric research in relation to mathematical finance, stochastic processes, statistics, and probability theory, as well as computationally intensive areas of economics such as modern industrial organization and dynamic macroeconomics.