Attrition is monotonic when agents leaving multi-period studies do not return. Under a general missing at random (MAR) assumption, we study efficiency in estimation of parameters defined by moment restrictions on the distributions of the counterfactuals that were unrealized due to monotonic attrition. We discuss novel issues related to overidentification, usability of sample units, and the information content of various MAR assumptions for estimation of such parameters. We propose a standard doubly robust estimator for these parameters by equating to zero the sample analog of their respective efficient influence functions. Our proposed estimator performs well and vastly outperforms other estimators in our simulation experiment and empirical illustration.
We consider a causal structure with endogeneity, i.e., unobserved confoundedness, where an instrumental variable is available. In this setting, we show that the mean social welfare function can be identified and represented via the marginal treatment effect as the operator kernel. This representation result can be applied to a variety of statistical decision rules for treatment choice, including plug-in rules, Bayes rules, and empirical welfare maximization rules. Focusing on the application of the empirical welfare maximization framework, we provide convergence rates of the worst-case average welfare loss (regret).
This paper considers testing for unit roots in Gaussian panels with cross-sectional dependence generated by common factors. Within our setup, we can analyze restricted versions of the two prevalent approaches in the literature, that of Moon and Perron (2004, Journal of Econometrics 122, 81–126), who specify a factor model for the innovations, and the PANIC setup proposed in Bai and Ng (2004, Econometrica 72, 1127–1177), who test common factors and idiosyncratic deviations separately for unit roots. We show that both frameworks lead to locally asymptotically normal experiments with the same central sequence and Fisher information. Using Le Cam’s theory of statistical experiments, we obtain the local asymptotic power envelope for unit-root tests. We show that the popular Moon and Perron (2004, Journal of Econometrics 122, 81–126) and Bai and Ng (2010, Econometric Theory 26, 1088–1114) tests only attain the power envelope in case there is no heterogeneity in the long-run variance of the idiosyncratic components. We develop a new test which is asymptotically uniformly most powerful irrespective of possible heterogeneity in the long-run variance of the idiosyncratic components. Monte Carlo simulations corroborate our asymptotic results and document significant gains in finite-sample power if the variances of the idiosyncratic shocks differ substantially among the cross-sectional units.
This paper presents an asymptotic theory for recurrent jump diffusion models with well-defined scale functions. The class of such models is broad, including general nonstationary as well as stationary jump diffusions with state-dependent jump sizes and intensities. The asymptotics for recurrent jump diffusion models with scale functions are largely comparable to the asymptotics for the corresponding diffusion models without jumps. For stationary jump diffusions, our asymptotics yield the usual law of large numbers and the standard central limit theory with normal limit distributions. The asymptotics for nonstationary jump diffusions, on the other hand, are nonstandard and the limit distributions are given as generalized diffusion processes.