WELFARE ANALYSIS VIA MARGINAL TREATMENT EFFECTS

IF 1 4区 经济学 Q3 ECONOMICS Econometric Theory Pub Date : 2024-09-16 DOI:10.1017/s0266466624000227
Yuya Sasaki, Takuya Ura
{"title":"WELFARE ANALYSIS VIA MARGINAL TREATMENT EFFECTS","authors":"Yuya Sasaki, Takuya Ura","doi":"10.1017/s0266466624000227","DOIUrl":null,"url":null,"abstract":"<p>We consider a causal structure with endogeneity, i.e., unobserved confoundedness, where an instrumental variable is available. In this setting, we show that the mean social welfare function can be identified and represented via the marginal treatment effect as the operator kernel. This representation result can be applied to a variety of statistical decision rules for treatment choice, including plug-in rules, Bayes rules, and empirical welfare maximization rules. Focusing on the application of the empirical welfare maximization framework, we provide convergence rates of the worst-case average welfare loss (regret).</p>","PeriodicalId":49275,"journal":{"name":"Econometric Theory","volume":"36 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometric Theory","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1017/s0266466624000227","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

We consider a causal structure with endogeneity, i.e., unobserved confoundedness, where an instrumental variable is available. In this setting, we show that the mean social welfare function can be identified and represented via the marginal treatment effect as the operator kernel. This representation result can be applied to a variety of statistical decision rules for treatment choice, including plug-in rules, Bayes rules, and empirical welfare maximization rules. Focusing on the application of the empirical welfare maximization framework, we provide convergence rates of the worst-case average welfare loss (regret).

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过边际治疗效果进行福利分析
我们考虑的是一种具有内生性的因果结构,即未观察到的混杂性,其中有一个工具变量。在这种情况下,我们证明平均社会福利函数可以通过边际治疗效果作为算子核来识别和表示。这一表示结果可应用于各种治疗选择的统计决策规则,包括插件规则、贝叶斯规则和经验福利最大化规则。我们将重点放在经验福利最大化框架的应用上,提供了最坏情况下平均福利损失(遗憾)的收敛率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Econometric Theory
Econometric Theory MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-STATISTICS & PROBABILITY
CiteScore
1.90
自引率
0.00%
发文量
52
审稿时长
>12 weeks
期刊介绍: Since its inception, Econometric Theory has aimed to endow econometrics with an innovative journal dedicated to advance theoretical research in econometrics. It provides a centralized professional outlet for original theoretical contributions in all of the major areas of econometrics, and all fields of research in econometric theory fall within the scope of ET. In addition, ET fosters the multidisciplinary features of econometrics that extend beyond economics. Particularly welcome are articles that promote original econometric research in relation to mathematical finance, stochastic processes, statistics, and probability theory, as well as computationally intensive areas of economics such as modern industrial organization and dynamic macroeconomics.
期刊最新文献
INFERENCE IN MILDLY EXPLOSIVE AUTOREGRESSIONS UNDER UNCONDITIONAL HETEROSKEDASTICITY EFFICIENCY IN ESTIMATION UNDER MONOTONIC ATTRITION WELFARE ANALYSIS VIA MARGINAL TREATMENT EFFECTS APPLICATIONS OF FUNCTIONAL DEPENDENCE TO SPATIAL ECONOMETRICS IDENTIFICATION AND STATISTICAL DECISION THEORY
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1