Digital twinning of cardiac electrophysiology for congenital heart disease.

IF 3.7 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Journal of The Royal Society Interface Pub Date : 2024-06-01 Epub Date: 2024-06-05 DOI:10.1098/rsif.2023.0729
Matteo Salvador, Fanwei Kong, Mathias Peirlinck, David W Parker, Henry Chubb, Anne M Dubin, Alison L Marsden
{"title":"Digital twinning of cardiac electrophysiology for congenital heart disease.","authors":"Matteo Salvador, Fanwei Kong, Mathias Peirlinck, David W Parker, Henry Chubb, Anne M Dubin, Alison L Marsden","doi":"10.1098/rsif.2023.0729","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, blending mechanistic knowledge with machine learning has had a major impact in digital healthcare. In this work, we introduce a computational pipeline to build certified digital replicas of cardiac electrophysiology in paediatric patients with congenital heart disease. We construct the patient-specific geometry by means of semi-automatic segmentation and meshing tools. We generate a dataset of electrophysiology simulations covering cell-to-organ level model parameters and using rigorous mathematical models based on differential equations. We previously proposed Branched Latent Neural Maps (BLNMs) as an accurate and efficient means to recapitulate complex physical processes in a neural network. Here, we employ BLNMs to encode the parametrized temporal dynamics of <i>in silico</i> 12-lead electrocardiograms (ECGs). BLNMs act as a geometry-specific surrogate model of cardiac function for fast and robust parameter estimation to match clinical ECGs in paediatric patients. Identifiability and trustworthiness of calibrated model parameters are assessed by sensitivity analysis and uncertainty quantification.</p>","PeriodicalId":17488,"journal":{"name":"Journal of The Royal Society Interface","volume":"21 215","pages":"20230729"},"PeriodicalIF":3.7000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11285762/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Royal Society Interface","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1098/rsif.2023.0729","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, blending mechanistic knowledge with machine learning has had a major impact in digital healthcare. In this work, we introduce a computational pipeline to build certified digital replicas of cardiac electrophysiology in paediatric patients with congenital heart disease. We construct the patient-specific geometry by means of semi-automatic segmentation and meshing tools. We generate a dataset of electrophysiology simulations covering cell-to-organ level model parameters and using rigorous mathematical models based on differential equations. We previously proposed Branched Latent Neural Maps (BLNMs) as an accurate and efficient means to recapitulate complex physical processes in a neural network. Here, we employ BLNMs to encode the parametrized temporal dynamics of in silico 12-lead electrocardiograms (ECGs). BLNMs act as a geometry-specific surrogate model of cardiac function for fast and robust parameter estimation to match clinical ECGs in paediatric patients. Identifiability and trustworthiness of calibrated model parameters are assessed by sensitivity analysis and uncertainty quantification.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
针对先天性心脏病的心脏电生理学数字化孪生研究。
近年来,机理知识与机器学习的融合对数字医疗产生了重大影响。在这项工作中,我们介绍了一种计算管道,用于为患有先天性心脏病的儿科患者建立经过认证的心脏电生理学数字复制品。我们通过半自动分割和网格划分工具构建患者特定的几何体。我们利用基于微分方程的严格数学模型,生成了涵盖细胞到器官级模型参数的电生理学模拟数据集。我们之前提出了分支潜在神经图(BLNMs),作为在神经网络中再现复杂物理过程的准确而有效的方法。在此,我们采用 BLNMs 来编码硅 12 导联心电图(ECG)的参数化时间动态。BLNMs 可作为心脏功能的特定几何代用模型,用于快速、稳健的参数估计,以匹配儿科患者的临床心电图。通过敏感性分析和不确定性量化评估了校准模型参数的可识别性和可信度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of The Royal Society Interface
Journal of The Royal Society Interface 综合性期刊-综合性期刊
CiteScore
7.10
自引率
2.60%
发文量
234
审稿时长
2.5 months
期刊介绍: J. R. Soc. Interface welcomes articles of high quality research at the interface of the physical and life sciences. It provides a high-quality forum to publish rapidly and interact across this boundary in two main ways: J. R. Soc. Interface publishes research applying chemistry, engineering, materials science, mathematics and physics to the biological and medical sciences; it also highlights discoveries in the life sciences of relevance to the physical sciences. Both sides of the interface are considered equally and it is one of the only journals to cover this exciting new territory. J. R. Soc. Interface welcomes contributions on a diverse range of topics, including but not limited to; biocomplexity, bioengineering, bioinformatics, biomaterials, biomechanics, bionanoscience, biophysics, chemical biology, computer science (as applied to the life sciences), medical physics, synthetic biology, systems biology, theoretical biology and tissue engineering.
期刊最新文献
Model-informed optimal allocation of limited resources to mitigate infectious disease outbreaks in societies at war. Physical mechanism reveals bacterial slowdown above a critical number of flagella. Cooperative control of environmental extremes by artificial intelligent agents. Quantifying social media predictors of violence during the 6 January US Capitol insurrection using Granger causality. Seeing the piles of the velvet bending under our finger sliding over a tactile stimulator improves the feeling of the fabric.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1