Mahan Hosseinzadeh Fakhr , Ivan Lopez Carrasco , Dmitry Belyaev , Jihun Kang , YeHyeon Shin , Jong-Souk Yeo , Won-Gun Koh , Jeongwoo Ham , Alexander Michaelis , Joerg Opitz , Natalia Beshchasna
{"title":"Recent advances in wearable electrochemical biosensors towards technological and material aspects","authors":"Mahan Hosseinzadeh Fakhr , Ivan Lopez Carrasco , Dmitry Belyaev , Jihun Kang , YeHyeon Shin , Jong-Souk Yeo , Won-Gun Koh , Jeongwoo Ham , Alexander Michaelis , Joerg Opitz , Natalia Beshchasna","doi":"10.1016/j.biosx.2024.100503","DOIUrl":null,"url":null,"abstract":"<div><p>The next generation of wearable biosensors comes with the latest advancements in biosensor technology. Soft and stretchable electrode materials like hydrogels with the similar functionalities of human tissue including stretchability, self-healability, and responsiveness to different stimuli have emerged as the most versatile materials in wearable electronics. The incorporation of conductive nanofillers is found to enhance the sensitivity of the electrochemical biosensors significantly. Microfluidic technology has reduced the volume of samples and reagents required for the analysis, allowing continuous biomedical monitoring from a drop of biofluid. In this paper, the most advanced progress in electrochemical wearable platforms that can noninvasively and continuously monitor the biochemical markers in body fluids for the diagnosis and health management is reviewed. Innovation in microelectronics, modification, fabrication technologies, and detection methods are the main focus of the discussion. In particular, hydrogel-based sensors and microfluidic systems as the latest technology trends in wearable detection are discussed in detail. Integration of miniaturized electrochemical wearable biosensors with wireless technology as a great promise for real-time healthcare monitoring and point-of-care (POC) diagnostics is also summarized. Finally, we outline the most advanced wearable biosensors with optimized material and design as well as key challenges that need to be addressed to improve sensing performance (accuracy, sensitivity, selectivity, stability), portability (miniaturized size and light weight), and flexibility of the wearable biosensors.</p></div>","PeriodicalId":260,"journal":{"name":"Biosensors and Bioelectronics: X","volume":"19 ","pages":"Article 100503"},"PeriodicalIF":10.6100,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590137024000670/pdfft?md5=884e47b94f329229f5631b2585fe9d41&pid=1-s2.0-S2590137024000670-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors and Bioelectronics: X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590137024000670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
The next generation of wearable biosensors comes with the latest advancements in biosensor technology. Soft and stretchable electrode materials like hydrogels with the similar functionalities of human tissue including stretchability, self-healability, and responsiveness to different stimuli have emerged as the most versatile materials in wearable electronics. The incorporation of conductive nanofillers is found to enhance the sensitivity of the electrochemical biosensors significantly. Microfluidic technology has reduced the volume of samples and reagents required for the analysis, allowing continuous biomedical monitoring from a drop of biofluid. In this paper, the most advanced progress in electrochemical wearable platforms that can noninvasively and continuously monitor the biochemical markers in body fluids for the diagnosis and health management is reviewed. Innovation in microelectronics, modification, fabrication technologies, and detection methods are the main focus of the discussion. In particular, hydrogel-based sensors and microfluidic systems as the latest technology trends in wearable detection are discussed in detail. Integration of miniaturized electrochemical wearable biosensors with wireless technology as a great promise for real-time healthcare monitoring and point-of-care (POC) diagnostics is also summarized. Finally, we outline the most advanced wearable biosensors with optimized material and design as well as key challenges that need to be addressed to improve sensing performance (accuracy, sensitivity, selectivity, stability), portability (miniaturized size and light weight), and flexibility of the wearable biosensors.
期刊介绍:
Biosensors and Bioelectronics: X, an open-access companion journal of Biosensors and Bioelectronics, boasts a 2020 Impact Factor of 10.61 (Journal Citation Reports, Clarivate Analytics 2021). Offering authors the opportunity to share their innovative work freely and globally, Biosensors and Bioelectronics: X aims to be a timely and permanent source of information. The journal publishes original research papers, review articles, communications, editorial highlights, perspectives, opinions, and commentaries at the intersection of technological advancements and high-impact applications. Manuscripts submitted to Biosensors and Bioelectronics: X are assessed based on originality and innovation in technology development or applications, aligning with the journal's goal to cater to a broad audience interested in this dynamic field.