MRI-based sensing of pH-responsive content release from mesoporous silica nanoparticles

IF 2.3 4区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS Journal of Sol-Gel Science and Technology Pub Date : 2024-06-04 DOI:10.1007/s10971-024-06422-9
Mirjana Mundžić, Jelena Lazović, Minja Mladenović, Aleksandra Pavlović, Amelia Ultimo, Oliviero L. Gobbo, Eduardo Ruiz-Hernandez, Maria Jose Santos-Martinez, Nikola Ž. Knežević
{"title":"MRI-based sensing of pH-responsive content release from mesoporous silica nanoparticles","authors":"Mirjana Mundžić, Jelena Lazović, Minja Mladenović, Aleksandra Pavlović, Amelia Ultimo, Oliviero L. Gobbo, Eduardo Ruiz-Hernandez, Maria Jose Santos-Martinez, Nikola Ž. Knežević","doi":"10.1007/s10971-024-06422-9","DOIUrl":null,"url":null,"abstract":"<p>A proof of principle study toward developing a novel methodology which could be applicable for a non-invasive monitoring of the release of cargo molecules from therapeutic and diagnostic nanoparticles, as well as for possible monitoring of tissue pH variations. This was achieved by quantifying changes in longitudinal relaxation time (T<sub>1</sub>) before and after the pH-responsive release of contrast agents, for magnetic resonance imaging (MRI), from the pores of mesoporous silica nanoparticles (MSNs). The pores were filled with the FDA-approved contrast agent Gadobutrol (GdB), and its retention inside the pores ensured by covalent attachment of β-cyclodextrin monoaldehyde to hydrazine-functionalized MSN, through acidification-cleavable hydrazone linkage. The release kinetics of GdB was measured by fluorescence spectroscopy which revealed that the release of the contrast agent was enhanced at pH 5.0 in comparison to the release at pH 6.0 and 7.4. Furthermore, the changes in T<sub>1</sub>, occurring in response to the enhanced release of GdB from the pores of MSN at weakly acidic conditions, were successfully demonstrated by MRI measurements. It is envisioned that this approach using contrast agent-loaded nanoparticles before the treatment with the drug-filled analogs, could be applied in the future for tracking the locations and efficacies of nanomedicines for therapeutic cargo delivery.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":null,"pages":null},"PeriodicalIF":2.3000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sol-Gel Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s10971-024-06422-9","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

A proof of principle study toward developing a novel methodology which could be applicable for a non-invasive monitoring of the release of cargo molecules from therapeutic and diagnostic nanoparticles, as well as for possible monitoring of tissue pH variations. This was achieved by quantifying changes in longitudinal relaxation time (T1) before and after the pH-responsive release of contrast agents, for magnetic resonance imaging (MRI), from the pores of mesoporous silica nanoparticles (MSNs). The pores were filled with the FDA-approved contrast agent Gadobutrol (GdB), and its retention inside the pores ensured by covalent attachment of β-cyclodextrin monoaldehyde to hydrazine-functionalized MSN, through acidification-cleavable hydrazone linkage. The release kinetics of GdB was measured by fluorescence spectroscopy which revealed that the release of the contrast agent was enhanced at pH 5.0 in comparison to the release at pH 6.0 and 7.4. Furthermore, the changes in T1, occurring in response to the enhanced release of GdB from the pores of MSN at weakly acidic conditions, were successfully demonstrated by MRI measurements. It is envisioned that this approach using contrast agent-loaded nanoparticles before the treatment with the drug-filled analogs, could be applied in the future for tracking the locations and efficacies of nanomedicines for therapeutic cargo delivery.

Graphical Abstract

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于磁共振成像的介孔二氧化硅纳米颗粒 pH 值响应式内容释放传感
一项原理验证研究旨在开发一种新方法,该方法可用于非侵入性监测治疗和诊断纳米粒子中货物分子的释放,以及可能的组织 pH 值变化监测。这是通过量化介孔二氧化硅纳米粒子(MSNs)孔隙中用于磁共振成像(MRI)的造影剂的 pH 响应释放前后纵向弛豫时间(T1)的变化来实现的。孔隙中填充了美国食品及药物管理局批准的造影剂钆布醇(GdB),并通过可酸化裂解的腙连接将β-环糊精单醛共价连接到肼功能化的 MSN 上,确保其在孔隙中的保留。荧光光谱测定了 GdB 的释放动力学,结果表明,与 pH 值为 6.0 和 7.4 时的释放相比,pH 值为 5.0 时造影剂的释放更强。此外,核磁共振成像测量成功地证明了在弱酸性条件下,GdB 从 MSN 孔隙中的释放增强所引起的 T1 变化。预计这种在使用药物填充类似物进行治疗前使用造影剂负载纳米粒子的方法将来可用于跟踪纳米药物的位置和疗效,以进行治疗性货物运输。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Sol-Gel Science and Technology
Journal of Sol-Gel Science and Technology 工程技术-材料科学:硅酸盐
CiteScore
4.70
自引率
4.00%
发文量
280
审稿时长
2.1 months
期刊介绍: The primary objective of the Journal of Sol-Gel Science and Technology (JSST), the official journal of the International Sol-Gel Society, is to provide an international forum for the dissemination of scientific, technological, and general knowledge about materials processed by chemical nanotechnologies known as the "sol-gel" process. The materials of interest include gels, gel-derived glasses, ceramics in form of nano- and micro-powders, bulk, fibres, thin films and coatings as well as more recent materials such as hybrid organic-inorganic materials and composites. Such materials exhibit a wide range of optical, electronic, magnetic, chemical, environmental, and biomedical properties and functionalities. Methods for producing sol-gel-derived materials and the industrial uses of these materials are also of great interest.
期刊最新文献
Hybrid Polyvinyl Alcohol-Silica Antibacterial Nanofiber Fabricated by Combined Sol-Gel and Electrospinning Techniques Oil resistivity of fluorine-free foams stabilized by silica nanoparticles and mixture of silicone and hydrocarbon surfactants Study the influence of Ag+ nanoparticles on the surface of the Sr1-xAgxFeO3-δ perovskite on optical, magnetic and antibacterial properties Unveiling Bi-functional potential of ZnMoO4-enriched nanoflakes modified electrodes for efficient photocatalysis and supercapacitors Zn-doped manganese tetroxide/graphene oxide cathode materials for high-performance aqueous zinc-ion battery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1