N. Yahyaoui , E. Jellouli , P. Baser , N. Zeiri , M. Said , Mohammad N. Murshed
{"title":"Computation of the near-infrared electro-absorption in GeSn/SiGeSn step quantum wells","authors":"N. Yahyaoui , E. Jellouli , P. Baser , N. Zeiri , M. Said , Mohammad N. Murshed","doi":"10.1016/j.micrna.2024.207876","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, we propose a theoretical simulation of the type-I step quantum well obtained from GeSn/SiGeSn to scan a wide range of telecommunication wavelengths and obtain near-infrared optical modulators. At T = 300 K, the band discontinuities and energy gap between stretched Ge<sub>1−<em>x</em></sub>Sn<sub><em>x</em></sub> and relaxed Si<sub>0.1</sub>Ge<sub>0.9−<em>y</em></sub>Sn<sub><em>y</em></sub> due to the acquisition of the heterostructure were calculated.</p><p>Then, optimization of this heterostructure based on (Si) GeSn was performed using the solid theory model to balance out the composition y of Si<sub>0.1</sub>Ge<sub>0.9-y</sub>Sn<sub>y</sub> relaxed and thickness of Ge<sub>0.91</sub>Sn<sub>0.09</sub> QWs. The eigenenergies and their related wavefunctions are computed by solving the Schrödinger equation using the finite difference method under the framework of the effective mass approximation. Depending on the y concentration, the energy levels of the electron and the heavy hole, the change of transition energies and oscillator strength were examined for different well widths. Additionally, the absorption coefficient with y concentration and structure parameters were examined.</p><p>From the findings obtained, it was determined that this material group is very important to obtain high efficiency from electro-absorption modulators covering the 1.55 μm wavelength range.</p></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"193 ","pages":"Article 207876"},"PeriodicalIF":2.7000,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773012324001250","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we propose a theoretical simulation of the type-I step quantum well obtained from GeSn/SiGeSn to scan a wide range of telecommunication wavelengths and obtain near-infrared optical modulators. At T = 300 K, the band discontinuities and energy gap between stretched Ge1−xSnx and relaxed Si0.1Ge0.9−ySny due to the acquisition of the heterostructure were calculated.
Then, optimization of this heterostructure based on (Si) GeSn was performed using the solid theory model to balance out the composition y of Si0.1Ge0.9-ySny relaxed and thickness of Ge0.91Sn0.09 QWs. The eigenenergies and their related wavefunctions are computed by solving the Schrödinger equation using the finite difference method under the framework of the effective mass approximation. Depending on the y concentration, the energy levels of the electron and the heavy hole, the change of transition energies and oscillator strength were examined for different well widths. Additionally, the absorption coefficient with y concentration and structure parameters were examined.
From the findings obtained, it was determined that this material group is very important to obtain high efficiency from electro-absorption modulators covering the 1.55 μm wavelength range.
在这项研究中,我们提出了对 GeSn/SiGeSn 制成的 I 型阶跃量子阱进行理论模拟,以扫描宽范围的电信波长并获得近红外光调制器。在 T = 300 K 时,计算了由于异质结构的获得而导致的拉伸 Ge1-xSnx 与松弛 Si0.1Ge0.9-ySny 之间的能带不连续性和能隙。然后,利用固体理论模型对这种基于(Si)GeSn 的异质结构进行了优化,以平衡松弛 Si0.1Ge0.9-ySny 的成分 y 和 Ge0.91Sn0.09 QW 的厚度。在有效质量近似的框架下,使用有限差分法求解薛定谔方程,从而计算出特征能及其相关波函数。根据 y 浓度、电子和重空穴的能级,研究了不同阱宽下跃迁能量和振荡器强度的变化。此外,还研究了吸收系数与 y 浓度和结构参数的关系。根据研究结果,可以确定该材料群对于在 1.55 μm 波长范围内获得高效电吸收调制器非常重要。