Optimization of efficiency of CsPbI2Br by using different electron transport and hole transport layers: A DFT and SCAPS-1D simulation

IF 2.7 Q2 PHYSICS, CONDENSED MATTER Micro and Nanostructures Pub Date : 2024-11-14 DOI:10.1016/j.micrna.2024.208024
Mukaddar Sk
{"title":"Optimization of efficiency of CsPbI2Br by using different electron transport and hole transport layers: A DFT and SCAPS-1D simulation","authors":"Mukaddar Sk","doi":"10.1016/j.micrna.2024.208024","DOIUrl":null,"url":null,"abstract":"<div><div>In this article, we embark on an exciting journey to identify the ideal electron transport layers (ETL) and hole transport layers (HTL) that can significantly boost the efficiency of CsPbI<sub>2</sub>Br-based solar cells. Utilizing first-principles calculations with the modified Becke-Johnson potential (mBJ) and spin-orbit correction, we uncovered the direct band gap property of CsPbI<sub>2</sub>Br, measuring an impressive 1.81 eV. Coupled with its remarkable absorption coefficient of 10<sup>5</sup> cm⁻<sup>1</sup> and minimal reflectivity throughout the visible spectrum, this material stands out as an emerging absorber layer for photovoltaic cells. Also, using cutting-edge SCAPS-1D simulations, we explore a range of ETL materials, including TiO<sub>2</sub>, ZnO, CdS, STO, WS<sub>2</sub>, and Nb<sub>2</sub>O<sub>5</sub>, alongside HTL options like NiO, Spiro, SnS, CuI, Cu<sub>2</sub>O, and CuSbS<sub>2</sub>. Our findings reveal that Nb<sub>2</sub>O<sub>5</sub> and Cu<sub>2</sub>O emerge as the most promising candidates for ETL and HTL to enhance the performance of CsPbI<sub>2</sub>Br absorbers, opening the door to more efficient solar energy solutions. The efficiencies achieved with the ETL and HTL-based solar cells, specifically Au/CsPbI<sub>2</sub>Br/Nb<sub>2</sub>O<sub>5</sub>/FTO and Au/Cu<sub>2</sub>O/CsPbI<sub>2</sub>Br/FTO, are impressive, standing at 17.91 % and 18.13 %, respectively. Moreover, various factors such as the thickness of the absorbing layer, HTL, and ETL, along with total defect density (N<sub>t</sub>), donor and acceptor defect densities of both the absorber and the transport layers, and the device temperature, significantly influence the performance metrics of the Au/Cu<sub>2</sub>O/CsPbI<sub>2</sub>Br/Nb<sub>2</sub>O<sub>5</sub>/FTO solar cell. Our findings reveal impressive values: a maximum open-circuit voltage (V<sub>oc</sub>) of 1.21 V, a short-circuit current (J<sub>sc</sub>) of 32.47 mA/cm<sup>2</sup>, a fill factor of 87.7 %, and an efficiency (η) of 22.31 %. These findings exceed the previously reported values for halide perovskite based solar cells, underscoring the promise of this research in shaping the future of cutting-edge perovskite-based solar cells.</div></div>","PeriodicalId":100923,"journal":{"name":"Micro and Nanostructures","volume":"197 ","pages":"Article 208024"},"PeriodicalIF":2.7000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro and Nanostructures","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2773012324002735","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we embark on an exciting journey to identify the ideal electron transport layers (ETL) and hole transport layers (HTL) that can significantly boost the efficiency of CsPbI2Br-based solar cells. Utilizing first-principles calculations with the modified Becke-Johnson potential (mBJ) and spin-orbit correction, we uncovered the direct band gap property of CsPbI2Br, measuring an impressive 1.81 eV. Coupled with its remarkable absorption coefficient of 105 cm⁻1 and minimal reflectivity throughout the visible spectrum, this material stands out as an emerging absorber layer for photovoltaic cells. Also, using cutting-edge SCAPS-1D simulations, we explore a range of ETL materials, including TiO2, ZnO, CdS, STO, WS2, and Nb2O5, alongside HTL options like NiO, Spiro, SnS, CuI, Cu2O, and CuSbS2. Our findings reveal that Nb2O5 and Cu2O emerge as the most promising candidates for ETL and HTL to enhance the performance of CsPbI2Br absorbers, opening the door to more efficient solar energy solutions. The efficiencies achieved with the ETL and HTL-based solar cells, specifically Au/CsPbI2Br/Nb2O5/FTO and Au/Cu2O/CsPbI2Br/FTO, are impressive, standing at 17.91 % and 18.13 %, respectively. Moreover, various factors such as the thickness of the absorbing layer, HTL, and ETL, along with total defect density (Nt), donor and acceptor defect densities of both the absorber and the transport layers, and the device temperature, significantly influence the performance metrics of the Au/Cu2O/CsPbI2Br/Nb2O5/FTO solar cell. Our findings reveal impressive values: a maximum open-circuit voltage (Voc) of 1.21 V, a short-circuit current (Jsc) of 32.47 mA/cm2, a fill factor of 87.7 %, and an efficiency (η) of 22.31 %. These findings exceed the previously reported values for halide perovskite based solar cells, underscoring the promise of this research in shaping the future of cutting-edge perovskite-based solar cells.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用不同的电子传输层和空穴传输层优化 CsPbI2Br 的效率:DFT 和 SCAPS-1D 模拟
在这篇文章中,我们开始了一段令人兴奋的旅程,以确定能够显著提高铯硼基太阳能电池效率的理想电子传输层(ETL)和空穴传输层(HTL)。利用修正贝克-约翰逊势(mBJ)和自旋轨道校正的第一原理计算,我们发现了 CsPbI2Br 的直接带隙特性,测量值达到了令人印象深刻的 1.81 eV。这种材料的吸收系数高达 105 cm-1,在整个可见光谱范围内的反射率极低,因此可作为光伏电池的新兴吸收层。此外,我们还利用最先进的 SCAPS-1D 模拟,探索了一系列 ETL 材料,包括 TiO2、ZnO、CdS、STO、WS2 和 Nb2O5,以及 HTL 选项,如 NiO、Spiro、SnS、CuI、Cu2O 和 CuSbS2。我们的研究结果表明,Nb2O5 和 Cu2O 是最有前途的 ETL 和 HTL 候选方案,可提高 CsPbI2Br 吸收器的性能,为更高效的太阳能解决方案打开大门。基于 ETL 和 HTL 的太阳能电池,特别是 Au/CsPbI2Br/Nb2O5/FTO 和 Au/Cu2O/CsPbI2Br/FTO 实现的效率令人印象深刻,分别为 17.91 % 和 18.13 %。此外,吸收层、HTL 和 ETL 的厚度、总缺陷密度 (Nt)、吸收层和传输层的供体和受体缺陷密度以及器件温度等各种因素都会显著影响 Au/Cu2O/CsPbI2Br/Nb2O5/FTO 太阳能电池的性能指标。我们的研究结果显示了令人印象深刻的数值:最大开路电压 (Voc) 为 1.21 V,短路电流 (Jsc) 为 32.47 mA/cm2,填充因子为 87.7 %,效率 (η) 为 22.31 %。这些发现超过了之前报道的基于卤化物的过氧化物太阳能电池的数值,凸显了这项研究在塑造未来尖端过氧化物太阳能电池方面的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
0
期刊最新文献
Optimization of efficiency of CsPbI2Br by using different electron transport and hole transport layers: A DFT and SCAPS-1D simulation The effect of MoS2 modified with transition metal (Fe, Co, Ni, Cu) on H2O adsorption: A first principle study Linearity analysis of FE-based graded channel junctionless FET obtaining negative capacitance for low power applications Triple independently tunable sensing with multiple resonances based on metal-insulator-metal waveguide Novel power MOSFET with drain-side N–Si/N-SiGe heterojunctions for improving reverse recovery performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1