Seeding the vertical growth of laterally coherent coordination polymers on the rutile-TiO2(110) surface

IF 5.8 3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nanoscale Pub Date : 2024-06-14 DOI:10.1039/d4nr01309c
Luca Schio, Gregor Bavdek, Cesare Grazioli, Claudia Obersnù, Albano Cossaro, Andrea Goldoni, Alberto Calloni, Alberto Bossi, Gianlorenzo Bussetti, Alessio Orbelli Biroli, Andrea Vittadini, Luca Floreano
{"title":"Seeding the vertical growth of laterally coherent coordination polymers on the rutile-TiO2(110) surface","authors":"Luca Schio, Gregor Bavdek, Cesare Grazioli, Claudia Obersnù, Albano Cossaro, Andrea Goldoni, Alberto Calloni, Alberto Bossi, Gianlorenzo Bussetti, Alessio Orbelli Biroli, Andrea Vittadini, Luca Floreano","doi":"10.1039/d4nr01309c","DOIUrl":null,"url":null,"abstract":"Coordination polymers may be synthesized by linear bridging ligands to metal ions with conventional chemistry methods (e.g. in solution). Such complexes can be hardly brought onto a substrate with the chemical, spatial and geometrical homogeneity required for device integration. Instead, we follow an in-situ synthesis approach, where the anchoring points are provided by a monolayer of metal(II)-tetraphenylporphyrin (M-TPP, M = Cu, Zn, Co) grown in vacuum on the rutile-TiO<small><sub>2</sub></small>(110) surface. We probed the metal affinity to axial coordination by further deposition of symmetric dipyridyl-naphthalenediimide (DPNDI). By NEXAFS linear polarization dichroism, we show that DPNDI stands up on Zn- and Co-TPP thanks to axial coordination, whereas it lies down on the substrate for Cu-TPP. Calculations for a model pyridine ligand predict strong binding to Zn and Co cations, whose interaction with the O anions underneath is disrupted by surface trans effect. The weaker interactions between pyridine and Cu-TPP are then overcome by the strong attraction between TiO<small><sub>2</sub></small> and DPNDI. The binding sites exposed by the homeotropic alignment of the ditopic DPNDI ligand on Zn- and Co-TPP are the foundations to grow coordination polymers preserving the lateral coherence of the basal layer.","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4nr01309c","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Coordination polymers may be synthesized by linear bridging ligands to metal ions with conventional chemistry methods (e.g. in solution). Such complexes can be hardly brought onto a substrate with the chemical, spatial and geometrical homogeneity required for device integration. Instead, we follow an in-situ synthesis approach, where the anchoring points are provided by a monolayer of metal(II)-tetraphenylporphyrin (M-TPP, M = Cu, Zn, Co) grown in vacuum on the rutile-TiO2(110) surface. We probed the metal affinity to axial coordination by further deposition of symmetric dipyridyl-naphthalenediimide (DPNDI). By NEXAFS linear polarization dichroism, we show that DPNDI stands up on Zn- and Co-TPP thanks to axial coordination, whereas it lies down on the substrate for Cu-TPP. Calculations for a model pyridine ligand predict strong binding to Zn and Co cations, whose interaction with the O anions underneath is disrupted by surface trans effect. The weaker interactions between pyridine and Cu-TPP are then overcome by the strong attraction between TiO2 and DPNDI. The binding sites exposed by the homeotropic alignment of the ditopic DPNDI ligand on Zn- and Co-TPP are the foundations to grow coordination polymers preserving the lateral coherence of the basal layer.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在金红石-二氧化钛(110)表面培育横向相干配位聚合物的垂直生长
配位聚合物可通过与金属离子的线性桥接配体以传统化学方法(如在溶液中)合成。这种配合物很难在基底上形成器件集成所需的化学、空间和几何均匀性。相反,我们采用了一种原位合成方法,在金红石-二氧化钛(110)表面真空生长的单层金属(II)-四苯基卟啉(M-TPP,M = 铜、锌、钴)提供了锚定点。我们通过进一步沉积对称二ridyl-naphthalenediimide(DPNDI)来探测金属与轴向配位的亲和性。通过 NEXAFS 线性偏振二色性,我们发现 DPNDI 在 Zn-TPP 和 Co-TPP 上的轴向配位使其站立,而在 Cu-TPP 的基底上则向下。通过对吡啶配体模型的计算,我们预测该配体与锌和钴阳离子的结合力很强,但由于表面反式效应,它们与下面 O 阴离子的相互作用受到了干扰。然后,吡啶和 Cu-TPP 之间较弱的相互作用被二氧化钛和 DPNDI 之间的强大吸引力所克服。二同位 DPNDI 配体在 Zn- 和 Co-TPP 上的同向排列所暴露的结合位点是生长配位聚合物、保持基底层横向一致性的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanoscale
Nanoscale CHEMISTRY, MULTIDISCIPLINARY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
12.10
自引率
3.00%
发文量
1628
审稿时长
1.6 months
期刊介绍: Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.
期刊最新文献
Quantum engineering of radiative properties of a nanoscale mesoscopic system High-performance flexible photodetectors based on CdTe/MoS2 heterojunction. Hydrogen production catalysed by atomically precise metal clusters. Tailoring the Pore Structure of Iron Oxide Core@Stellate Mesoporous Silica Shell Nanocomposites: Effects on MRI and Magnetic Hyperthermia Properties and Applicability to Anti-Cancer Therapies Novel three-dimensional fibrous covalent organic framework constructed via silver amalgam bridging for efficient organic dye adsorption and removal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1