{"title":"Development of gelatin-methacryloyl composite carriers for bone morphogenetic Protein-2 delivery: A potential strategy for spinal fusion.","authors":"Tao Li, Xiaobo Zhang, Yicun Hu, Xidan Gao, Xin Yao, Zhengwei Xu","doi":"10.1177/08853282241258302","DOIUrl":null,"url":null,"abstract":"<p><p>To reduce the risk of nonunion after spinal fusion surgery, the in situ transplantation of bone marrow mesenchymal stem cells (BMSCs) induced toward osteogenic differentiation by bone morphogenetic protein-2 (BMP2) has been proven effective. However, the current biological agents used for transplantation have limitations, such as a short half-life and low bioavailability. To address this, our study utilized a safe and effective gelatin-methacryloyl (GelMA) as a carrier for BMP2. In vitro, experiments were conducted to observe the ability of this composite vehicle to induce osteogenic differentiation of BMSCs. The results showed that the GelMA hydrogel, with its critical properties and controlled release performance of BMP2, exhibited a slow release of BMP2 over 30 days. Moreover, the GelMA hydrogel not only enhanced the proliferation activity of BMSCs but also significantly promoted their osteogenic differentiation ability, surpassing the BMP2 effects. To investigate the potential of the GelMA-BMP2 composite vehicle, a rabbit model was employed to explore its ability to induce in situ intervertebral fusion by BMSCs. Transplantation experiments in rabbits demonstrated the effective induction of intervertebral bone fusion by the GelMA-BMP2-BMSC composite vehicle. In conclusion, the GelMA-BMP2-BMSC composite vehicle shows promising prospects in preclinical translational therapy for spinal intervertebral fusion. It addresses the limitations of current biological agents and offers a controlled release of BMP2, enhancing the proliferation and osteogenic differentiation of BMSCs.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"195-206"},"PeriodicalIF":2.3000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/08853282241258302","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/15 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
To reduce the risk of nonunion after spinal fusion surgery, the in situ transplantation of bone marrow mesenchymal stem cells (BMSCs) induced toward osteogenic differentiation by bone morphogenetic protein-2 (BMP2) has been proven effective. However, the current biological agents used for transplantation have limitations, such as a short half-life and low bioavailability. To address this, our study utilized a safe and effective gelatin-methacryloyl (GelMA) as a carrier for BMP2. In vitro, experiments were conducted to observe the ability of this composite vehicle to induce osteogenic differentiation of BMSCs. The results showed that the GelMA hydrogel, with its critical properties and controlled release performance of BMP2, exhibited a slow release of BMP2 over 30 days. Moreover, the GelMA hydrogel not only enhanced the proliferation activity of BMSCs but also significantly promoted their osteogenic differentiation ability, surpassing the BMP2 effects. To investigate the potential of the GelMA-BMP2 composite vehicle, a rabbit model was employed to explore its ability to induce in situ intervertebral fusion by BMSCs. Transplantation experiments in rabbits demonstrated the effective induction of intervertebral bone fusion by the GelMA-BMP2-BMSC composite vehicle. In conclusion, the GelMA-BMP2-BMSC composite vehicle shows promising prospects in preclinical translational therapy for spinal intervertebral fusion. It addresses the limitations of current biological agents and offers a controlled release of BMP2, enhancing the proliferation and osteogenic differentiation of BMSCs.
期刊介绍:
The Journal of Biomaterials Applications is a fully peer reviewed international journal that publishes original research and review articles that emphasize the development, manufacture and clinical applications of biomaterials.
Peer-reviewed articles by biomedical specialists from around the world cover:
New developments in biomaterials, R&D, properties and performance, evaluation and applications
Applications in biomedical materials and devices - from sutures and wound dressings to biosensors and cardiovascular devices
Current findings in biological compatibility/incompatibility of biomaterials
The Journal of Biomaterials Applications publishes original articles that emphasize the development, manufacture and clinical applications of biomaterials. Biomaterials continue to be one of the most rapidly growing areas of research in plastics today and certainly one of the biggest technical challenges, since biomaterial performance is dependent on polymer compatibility with the aggressive biological environment. The Journal cuts across disciplines and focuses on medical research and topics that present the broadest view of practical applications of biomaterials in actual clinical use.
The Journal of Biomaterial Applications is devoted to new and emerging biomaterials technologies, particularly focusing on the many applications which are under development at industrial biomedical and polymer research facilities, as well as the ongoing activities in academic, medical and applied clinical uses of devices.