Impact of composition and surfactant-templating on mesoporous bioactive glasses structural evolution, bioactivity, and drug delivery property.

IF 2.3 4区 医学 Q3 ENGINEERING, BIOMEDICAL Journal of Biomaterials Applications Pub Date : 2025-01-08 DOI:10.1177/08853282241312040
Dana Almasri, Yaser Dahman
{"title":"Impact of composition and surfactant-templating on mesoporous bioactive glasses structural evolution, bioactivity, and drug delivery property.","authors":"Dana Almasri, Yaser Dahman","doi":"10.1177/08853282241312040","DOIUrl":null,"url":null,"abstract":"<p><p>This study explores mesoporous bioactive glasses (MBGs) that show promise as advanced therapeutic delivery platforms owing to their tailorable porous properties enabling enhanced drug loading capacity and biomimetic chemistry for localized, sustained release. This work systematically investigates the complex relationship between MBG composition and surfactant templating on structural evolution, <i>in vitro</i> bioactive response, resultant drug loading efficiency and release. A total of 12 samples of sol-gel-derived MBG were synthesized using cationic and non-ionic structure-directing agents (cetyltrimethylammonium bromide, Pluronic F127 and P123) while modulating the SiO<sub>2</sub>/CaO content, generating MBG with surface areas of 60-695 m<sup>2</sup>/g. Electron microscopy and nitrogen desorption studies verified the successful synthesis of the 12 ordered MBG formulations. Assessment of hydroxyapatite conversion kinetics via FTIR spectroscopy and SEM demonstrated accelerated deposition for 70-80% SiO<sub>2</sub> formulations, independent of the surfactant used. However, the templating agent had an impact on drug loading as observed in this study where MBG synthesized by the templating agent Pluronic P123 had higher drug loading compared to the other surfactants. To determine the drug release mechanisms, the in vitro kinetic profiles were fitted to various mathematical models including ze-ro. Most compositions exhibited release properties closest to zero-order, indicating a concentration-independent drug elution rate. These results in this study explain the relationship between tailored hierarchical architecture and intrinsic ion release rates to enable advanced functionality.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"8853282241312040"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/08853282241312040","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores mesoporous bioactive glasses (MBGs) that show promise as advanced therapeutic delivery platforms owing to their tailorable porous properties enabling enhanced drug loading capacity and biomimetic chemistry for localized, sustained release. This work systematically investigates the complex relationship between MBG composition and surfactant templating on structural evolution, in vitro bioactive response, resultant drug loading efficiency and release. A total of 12 samples of sol-gel-derived MBG were synthesized using cationic and non-ionic structure-directing agents (cetyltrimethylammonium bromide, Pluronic F127 and P123) while modulating the SiO2/CaO content, generating MBG with surface areas of 60-695 m2/g. Electron microscopy and nitrogen desorption studies verified the successful synthesis of the 12 ordered MBG formulations. Assessment of hydroxyapatite conversion kinetics via FTIR spectroscopy and SEM demonstrated accelerated deposition for 70-80% SiO2 formulations, independent of the surfactant used. However, the templating agent had an impact on drug loading as observed in this study where MBG synthesized by the templating agent Pluronic P123 had higher drug loading compared to the other surfactants. To determine the drug release mechanisms, the in vitro kinetic profiles were fitted to various mathematical models including ze-ro. Most compositions exhibited release properties closest to zero-order, indicating a concentration-independent drug elution rate. These results in this study explain the relationship between tailored hierarchical architecture and intrinsic ion release rates to enable advanced functionality.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
组成和表面活性剂模板对介孔生物活性玻璃结构演变、生物活性和药物传递特性的影响。
本研究探索了介孔生物活性玻璃(MBGs),由于其可定制的多孔特性,增强了药物负载能力和局部持续释放的仿生化学,因此它有望成为先进的治疗递送平台。本研究系统地探讨了MBG组成与表面活性剂模板在结构演变、体外生物活性反应、载药效率和释放等方面的复杂关系。采用阳离子和非离子结构导向剂(十六烷基三甲基溴化铵、Pluronic F127和P123)调节SiO2/CaO含量,合成了12个溶胶-凝胶衍生的MBG样品,得到的MBG表面积为60 ~ 695 m2/g。电子显微镜和氮解吸研究证实了12种有序MBG配方的成功合成。通过FTIR光谱和SEM对羟基磷灰石转化动力学进行了评估,结果表明,与使用的表面活性剂无关,70-80% SiO2的配方会加速沉积。然而,模板剂对载药量有影响,在本研究中观察到,模板剂Pluronic P123合成的MBG比其他表面活性剂具有更高的载药量。为了确定药物释放机制,将体外动力学曲线拟合到包括ze-ro在内的各种数学模型中。大多数组合物表现出接近零级的释放特性,表明药物洗脱速率与浓度无关。本研究的这些结果解释了定制层次结构和内在离子释放率之间的关系,以实现高级功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Biomaterials Applications
Journal of Biomaterials Applications 工程技术-材料科学:生物材料
CiteScore
5.10
自引率
3.40%
发文量
144
审稿时长
1.5 months
期刊介绍: The Journal of Biomaterials Applications is a fully peer reviewed international journal that publishes original research and review articles that emphasize the development, manufacture and clinical applications of biomaterials. Peer-reviewed articles by biomedical specialists from around the world cover: New developments in biomaterials, R&D, properties and performance, evaluation and applications Applications in biomedical materials and devices - from sutures and wound dressings to biosensors and cardiovascular devices Current findings in biological compatibility/incompatibility of biomaterials The Journal of Biomaterials Applications publishes original articles that emphasize the development, manufacture and clinical applications of biomaterials. Biomaterials continue to be one of the most rapidly growing areas of research in plastics today and certainly one of the biggest technical challenges, since biomaterial performance is dependent on polymer compatibility with the aggressive biological environment. The Journal cuts across disciplines and focuses on medical research and topics that present the broadest view of practical applications of biomaterials in actual clinical use. The Journal of Biomaterial Applications is devoted to new and emerging biomaterials technologies, particularly focusing on the many applications which are under development at industrial biomedical and polymer research facilities, as well as the ongoing activities in academic, medical and applied clinical uses of devices.
期刊最新文献
Comprehensive review of 3D printing techniques emphasizing thermal characterization in biomedical prototyping. Multifunctional electrospinning periosteum: Development status and prospect. Gingival keratinocyte adhesion on atomic layer-deposited hydroxyapatite coated titanium. Impact of composition and surfactant-templating on mesoporous bioactive glasses structural evolution, bioactivity, and drug delivery property. Investigation of polyvinylpyrrolidone-catechol-derived chitosan nanoconjugates allowed for kidney-targeted treatment of cisplatin-induced acute kidney injury and nursing care management.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1