Investigation of polyvinylpyrrolidone-catechol-derived chitosan nanoconjugates allowed for kidney-targeted treatment of cisplatin-induced acute kidney injury and nursing care management.
{"title":"Investigation of polyvinylpyrrolidone-catechol-derived chitosan nanoconjugates allowed for kidney-targeted treatment of cisplatin-induced acute kidney injury and nursing care management.","authors":"Guixian Chen","doi":"10.1177/08853282241304396","DOIUrl":null,"url":null,"abstract":"<p><p>Acute kidney injury (AKI) resulting from cisplatin (Cs) chemotherapy presents a significant challenge in clinical management. The study aimed to fabricate a novel compound Polyvinylpyrrolidone-catechol-derived chitosan nanoconjugates (PCChi-NC) for targeting Cs-induced AKI. Characterization studies utilizing UV-visible spectrophotometry, FT-IR, XRD, and TEM revealed a spherical morphology with diameters ranging from 20 to 60 nm. In vitro assessments utilizing HEK 293 cell lines demonstrated the biocompatibility of PCChi-NC without eliciting toxic effects. Furthermore, PCChi-NC exhibited a notable reduction in Cs-induced cell death in kidney cells, as evidenced by biomarker analysis. Anti-inflammatory analysis of mouse kidney homogenates revealed a decrease in TNF-α and IL-1β levels, indicative of the therapeutic efficacy of PCChi-NC in mitigating Cs-induced kidney inflammation. Moreover, In vivo, experimental analysis was evidenced by stable body weight and histopathological changes in mice. Our findings highlight the potential of PCChi-NC as a promising candidate for targeted therapy in Cs-induced AKI, owing to its unique renal targeting capacity.</p>","PeriodicalId":15138,"journal":{"name":"Journal of Biomaterials Applications","volume":" ","pages":"8853282241304396"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomaterials Applications","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/08853282241304396","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Acute kidney injury (AKI) resulting from cisplatin (Cs) chemotherapy presents a significant challenge in clinical management. The study aimed to fabricate a novel compound Polyvinylpyrrolidone-catechol-derived chitosan nanoconjugates (PCChi-NC) for targeting Cs-induced AKI. Characterization studies utilizing UV-visible spectrophotometry, FT-IR, XRD, and TEM revealed a spherical morphology with diameters ranging from 20 to 60 nm. In vitro assessments utilizing HEK 293 cell lines demonstrated the biocompatibility of PCChi-NC without eliciting toxic effects. Furthermore, PCChi-NC exhibited a notable reduction in Cs-induced cell death in kidney cells, as evidenced by biomarker analysis. Anti-inflammatory analysis of mouse kidney homogenates revealed a decrease in TNF-α and IL-1β levels, indicative of the therapeutic efficacy of PCChi-NC in mitigating Cs-induced kidney inflammation. Moreover, In vivo, experimental analysis was evidenced by stable body weight and histopathological changes in mice. Our findings highlight the potential of PCChi-NC as a promising candidate for targeted therapy in Cs-induced AKI, owing to its unique renal targeting capacity.
期刊介绍:
The Journal of Biomaterials Applications is a fully peer reviewed international journal that publishes original research and review articles that emphasize the development, manufacture and clinical applications of biomaterials.
Peer-reviewed articles by biomedical specialists from around the world cover:
New developments in biomaterials, R&D, properties and performance, evaluation and applications
Applications in biomedical materials and devices - from sutures and wound dressings to biosensors and cardiovascular devices
Current findings in biological compatibility/incompatibility of biomaterials
The Journal of Biomaterials Applications publishes original articles that emphasize the development, manufacture and clinical applications of biomaterials. Biomaterials continue to be one of the most rapidly growing areas of research in plastics today and certainly one of the biggest technical challenges, since biomaterial performance is dependent on polymer compatibility with the aggressive biological environment. The Journal cuts across disciplines and focuses on medical research and topics that present the broadest view of practical applications of biomaterials in actual clinical use.
The Journal of Biomaterial Applications is devoted to new and emerging biomaterials technologies, particularly focusing on the many applications which are under development at industrial biomedical and polymer research facilities, as well as the ongoing activities in academic, medical and applied clinical uses of devices.