GPU optimization techniques to accelerate optiGAN-a particle simulation GAN.

IF 6.3 2区 物理与天体物理 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Machine Learning Science and Technology Pub Date : 2024-06-01 Epub Date: 2024-06-13 DOI:10.1088/2632-2153/ad51c9
Anirudh Srikanth, Carlotta Trigila, Emilie Roncali
{"title":"GPU optimization techniques to accelerate optiGAN-a particle simulation GAN.","authors":"Anirudh Srikanth, Carlotta Trigila, Emilie Roncali","doi":"10.1088/2632-2153/ad51c9","DOIUrl":null,"url":null,"abstract":"<p><p>The demand for specialized hardware to train AI models has increased in tandem with the increase in the model complexity over the recent years. Graphics processing unit (GPU) is one such hardware that is capable of parallelizing operations performed on a large chunk of data. Companies like Nvidia, AMD, and Google have been constantly scaling-up the hardware performance as fast as they can. Nevertheless, there is still a gap between the required processing power and processing capacity of the hardware. To increase the hardware utilization, the software has to be optimized too. In this paper, we present some general GPU optimization techniques we used to efficiently train the optiGAN model, a Generative Adversarial Network that is capable of generating multidimensional probability distributions of optical photons at the photodetector face in radiation detectors, on an 8GB Nvidia Quadro RTX 4000 GPU. We analyze and compare the performances of all the optimizations based on the execution time and the memory consumed using the Nvidia Nsight Systems profiler tool. The optimizations gave approximately a 4.5x increase in the runtime performance when compared to a naive training on the GPU, without compromising the model performance. Finally we discuss optiGANs future work and how we are planning to scale the model on GPUs.</p>","PeriodicalId":33757,"journal":{"name":"Machine Learning Science and Technology","volume":"5 2","pages":"027001"},"PeriodicalIF":6.3000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11170465/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machine Learning Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2632-2153/ad51c9","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The demand for specialized hardware to train AI models has increased in tandem with the increase in the model complexity over the recent years. Graphics processing unit (GPU) is one such hardware that is capable of parallelizing operations performed on a large chunk of data. Companies like Nvidia, AMD, and Google have been constantly scaling-up the hardware performance as fast as they can. Nevertheless, there is still a gap between the required processing power and processing capacity of the hardware. To increase the hardware utilization, the software has to be optimized too. In this paper, we present some general GPU optimization techniques we used to efficiently train the optiGAN model, a Generative Adversarial Network that is capable of generating multidimensional probability distributions of optical photons at the photodetector face in radiation detectors, on an 8GB Nvidia Quadro RTX 4000 GPU. We analyze and compare the performances of all the optimizations based on the execution time and the memory consumed using the Nvidia Nsight Systems profiler tool. The optimizations gave approximately a 4.5x increase in the runtime performance when compared to a naive training on the GPU, without compromising the model performance. Finally we discuss optiGANs future work and how we are planning to scale the model on GPUs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 GPU 优化技术加速 OptiGAN--粒子模拟 GAN。
近年来,随着人工智能模型复杂性的增加,对训练人工智能模型的专用硬件的需求也随之增加。图形处理器(GPU)就是这样一种能够对大块数据进行并行运算的硬件。Nvidia、AMD 和谷歌等公司一直在以最快的速度提升硬件性能。然而,所需的处理能力与硬件的处理能力之间仍然存在差距。要提高硬件的利用率,就必须对软件进行优化。在本文中,我们介绍了一些通用 GPU 优化技术,这些技术用于在 8GB Nvidia Quadro RTX 4000 GPU 上高效训练 optiGAN 模型,这是一个生成对抗网络,能够生成辐射探测器中光电探测器面上光学光子的多维概率分布。我们使用 Nvidia Nsight Systems profiler 工具,根据执行时间和内存消耗分析和比较了所有优化的性能。与 GPU 上的原始训练相比,优化后的运行时间性能提高了约 4.5 倍,而模型性能并未受到影响。最后,我们将讨论 optiGANs 的未来工作,以及我们计划如何在 GPU 上扩展该模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Machine Learning Science and Technology
Machine Learning Science and Technology Computer Science-Artificial Intelligence
CiteScore
9.10
自引率
4.40%
发文量
86
审稿时长
5 weeks
期刊介绍: Machine Learning Science and Technology is a multidisciplinary open access journal that bridges the application of machine learning across the sciences with advances in machine learning methods and theory as motivated by physical insights. Specifically, articles must fall into one of the following categories: advance the state of machine learning-driven applications in the sciences or make conceptual, methodological or theoretical advances in machine learning with applications to, inspiration from, or motivated by scientific problems.
期刊最新文献
Quality assurance for online adaptive radiotherapy: a secondary dose verification model with geometry-encoded U-Net. GPU optimization techniques to accelerate optiGAN-a particle simulation GAN. WATUNet: a deep neural network for segmentation of volumetric sweep imaging ultrasound. Generating artificial displacement data of cracked specimen using physics-guided adversarial networks FAIR AI models in high energy physics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1