A Deep Learning Approach for Online State of Health Estimation of Lithium-Ion Batteries Using Partial Constant Current Charging Curves

IF 4.6 4区 化学 Q2 ELECTROCHEMISTRY Batteries Pub Date : 2024-06-14 DOI:10.3390/batteries10060206
Mano Schmitz, Julia Kowal
{"title":"A Deep Learning Approach for Online State of Health Estimation of Lithium-Ion Batteries Using Partial Constant Current Charging Curves","authors":"Mano Schmitz, Julia Kowal","doi":"10.3390/batteries10060206","DOIUrl":null,"url":null,"abstract":"The accurate state of health (SOH) estimation of lithium-ion batteries (LIBs) during operation is crucial to ensure optimal performance, prolonging battery life and preventing unexpected failure or safety hazards. This work presents a storage- and performance-optimised deep learning approach to estimate the capacity-based SOH of LIBs using raw sensor data from partial charging curves under constant current condition. The proposed model is based on a combination of a one-dimensional convolutional and long short-term memory neural network, and processes time, voltage, and incremental capacity of partial charging curves as time series. The model is cross-validated on different ageing scenarios, reaching an overall MAE = 0.418% and RMSE = 0.531%, promising an accurate SOH estimation of LIBs under varying usage and environmental conditions in a real-world application.","PeriodicalId":8755,"journal":{"name":"Batteries","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/batteries10060206","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

The accurate state of health (SOH) estimation of lithium-ion batteries (LIBs) during operation is crucial to ensure optimal performance, prolonging battery life and preventing unexpected failure or safety hazards. This work presents a storage- and performance-optimised deep learning approach to estimate the capacity-based SOH of LIBs using raw sensor data from partial charging curves under constant current condition. The proposed model is based on a combination of a one-dimensional convolutional and long short-term memory neural network, and processes time, voltage, and incremental capacity of partial charging curves as time series. The model is cross-validated on different ageing scenarios, reaching an overall MAE = 0.418% and RMSE = 0.531%, promising an accurate SOH estimation of LIBs under varying usage and environmental conditions in a real-world application.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用部分恒流充电曲线在线估计锂离子电池健康状况的深度学习方法
准确估计锂离子电池(LIB)在运行期间的健康状况(SOH)对于确保最佳性能、延长电池寿命、防止意外故障或安全隐患至关重要。本研究提出了一种存储和性能优化的深度学习方法,利用恒定电流条件下部分充电曲线的原始传感器数据来估计锂离子电池基于容量的 SOH。所提出的模型基于一维卷积神经网络和长短期记忆神经网络的组合,将部分充电曲线的时间、电压和增量容量作为时间序列进行处理。该模型在不同的老化情况下进行了交叉验证,总体 MAE = 0.418%,RMSE = 0.531%,有望在实际应用中准确估计锂电池在不同使用和环境条件下的 SOH。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Batteries
Batteries Energy-Energy Engineering and Power Technology
CiteScore
4.00
自引率
15.00%
发文量
217
审稿时长
7 weeks
期刊最新文献
Copper Wire Resistance Corrosion Test for Assessing Copper Compatibility of E-Thermal Fluids for Battery Electric Vehicles (BEVs) Advancements and Challenges in Perovskite-Based Photo-Induced Rechargeable Batteries and Supercapacitors: A Comparative Review A Physics–Guided Machine Learning Approach for Capacity Fading Mechanism Detection and Fading Rate Prediction Using Early Cycle Data A Deep Learning Approach for Online State of Health Estimation of Lithium-Ion Batteries Using Partial Constant Current Charging Curves Low-Temperature-Tolerant Aqueous Proton Battery with Porous Ti3C2Tx MXene Electrode and Phosphoric Acid Electrolyte
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1