Advancements and Challenges in Perovskite-Based Photo-Induced Rechargeable Batteries and Supercapacitors: A Comparative Review

IF 4.6 4区 化学 Q2 ELECTROCHEMISTRY Batteries Pub Date : 2024-08-08 DOI:10.3390/batteries10080284
Anil Kumar M. R., Atiyeh Nekahi, Mohamed Djihad Bouguern, Dongling Ma, Karim Zaghib
{"title":"Advancements and Challenges in Perovskite-Based Photo-Induced Rechargeable Batteries and Supercapacitors: A Comparative Review","authors":"Anil Kumar M. R., Atiyeh Nekahi, Mohamed Djihad Bouguern, Dongling Ma, Karim Zaghib","doi":"10.3390/batteries10080284","DOIUrl":null,"url":null,"abstract":"Perovskite-based photo-batteries (PBs) have been developed as a promising combination of photovoltaic and electrochemical technology due to their cost-effective design and significant increase in solar-to-electric power conversion efficiency. The use of complex metal oxides of the perovskite-type in batteries and photovoltaic cells has attracted considerable attention. Because of its variable bandgap, non-rigid structure, high light absorption capacity, long charge carrier diffusion length, and high charge mobility, this material has shown promise in energy storage devices, especially Li-ion batteries (LIBs) and PBs. This review paper focuses on recent progress and comparative analysis of PBs using perovskite-based materials. The practical application of these batteries as dependable power sources faces significant technical and financial challenges because solar radiation is alternating. In order to address this, research is being performed on PBs with the integration of perovskite solar cells (PSCs) as a way to balance energy availability and demand, cut down on energy waste, and stabilize power output for wearable and portable electronics as well as energy storage applications.","PeriodicalId":8755,"journal":{"name":"Batteries","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/batteries10080284","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Perovskite-based photo-batteries (PBs) have been developed as a promising combination of photovoltaic and electrochemical technology due to their cost-effective design and significant increase in solar-to-electric power conversion efficiency. The use of complex metal oxides of the perovskite-type in batteries and photovoltaic cells has attracted considerable attention. Because of its variable bandgap, non-rigid structure, high light absorption capacity, long charge carrier diffusion length, and high charge mobility, this material has shown promise in energy storage devices, especially Li-ion batteries (LIBs) and PBs. This review paper focuses on recent progress and comparative analysis of PBs using perovskite-based materials. The practical application of these batteries as dependable power sources faces significant technical and financial challenges because solar radiation is alternating. In order to address this, research is being performed on PBs with the integration of perovskite solar cells (PSCs) as a way to balance energy availability and demand, cut down on energy waste, and stabilize power output for wearable and portable electronics as well as energy storage applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于包晶石的光诱导充电电池和超级电容器的进展与挑战:比较综述
基于透辉石的光电池(PBs)是光伏技术和电化学技术的一种很有前途的组合,因为其设计成本低,而且能显著提高太阳能到电能的转换效率。在电池和光伏电池中使用复杂的透辉石型金属氧化物引起了广泛关注。这种材料具有可变带隙、非刚性结构、高光吸收能力、长电荷载流子扩散长度和高电荷迁移率等特点,因此在储能设备,尤其是锂离子电池(LIB)和光伏电池中大有可为。本综述论文重点介绍了使用透辉石基材料的 PB 的最新进展和比较分析。由于太阳辐射是交替变化的,因此将这些电池作为可靠电源的实际应用面临着巨大的技术和经济挑战。为了解决这个问题,目前正在对集成了透辉石太阳能电池 (PSC) 的 PB 进行研究,以此来平衡能源供应和需求,减少能源浪费,并稳定可穿戴和便携式电子设备以及储能应用的电力输出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Batteries
Batteries Energy-Energy Engineering and Power Technology
CiteScore
4.00
自引率
15.00%
发文量
217
审稿时长
7 weeks
期刊最新文献
Copper Wire Resistance Corrosion Test for Assessing Copper Compatibility of E-Thermal Fluids for Battery Electric Vehicles (BEVs) Advancements and Challenges in Perovskite-Based Photo-Induced Rechargeable Batteries and Supercapacitors: A Comparative Review A Physics–Guided Machine Learning Approach for Capacity Fading Mechanism Detection and Fading Rate Prediction Using Early Cycle Data A Deep Learning Approach for Online State of Health Estimation of Lithium-Ion Batteries Using Partial Constant Current Charging Curves Low-Temperature-Tolerant Aqueous Proton Battery with Porous Ti3C2Tx MXene Electrode and Phosphoric Acid Electrolyte
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1