Oxygen Vacancy-Enriched Amorphous Transition Metal Ternary Oxides toward Highly Efficient Oxygen Evolution Reaction

IF 9.6 1区 化学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Materials Letters Pub Date : 2024-06-12 DOI:10.1021/acsmaterialslett.4c00716
Qianyun Bai, Da Liu, Xiaoxiao Yan, Peifang Guo, Xingyu Ding, Kang Xiang, Xin Tu, Yanhui Guo* and Renbing Wu*, 
{"title":"Oxygen Vacancy-Enriched Amorphous Transition Metal Ternary Oxides toward Highly Efficient Oxygen Evolution Reaction","authors":"Qianyun Bai,&nbsp;Da Liu,&nbsp;Xiaoxiao Yan,&nbsp;Peifang Guo,&nbsp;Xingyu Ding,&nbsp;Kang Xiang,&nbsp;Xin Tu,&nbsp;Yanhui Guo* and Renbing Wu*,&nbsp;","doi":"10.1021/acsmaterialslett.4c00716","DOIUrl":null,"url":null,"abstract":"<p >Developing highly efficient oxygen evolution reaction (OER) electrocatalysts based on earth-abundant elements is critical to improve the efficiency of water electrolysis, but it remains a challenge. Herein, an amorphous ternary oxides composites FeNiCoO<sub><i>x</i></sub>/CoO<sub><i>x</i></sub> with rich oxygen vacancies are developed through a low-cost wet chemical deposition strategy toward this challenge. Benefiting from the synergistic effect of multimetal atom interaction and high exposure of active sites caused by oxygen vacancies and amorphous structure, the as-developed FeNiCoO<sub><i>x</i></sub>/CoO<sub><i>x</i></sub> electrocatalyst exhibits an exceptional catalytic performance with a low overpotential of only 221 mV at a current density of 100 mA cm<sup>–2</sup> and negligible performance degradation over 240 h. Furthermore, the FeNiCoO<sub><i>x</i></sub>/CoO<sub><i>x</i></sub>-assembled anion exchange membrane water electrolyzer (AEMWE) can achieve a high current density of 1 A cm<sup>–2</sup> at a low voltage of 1.765 V, demonstrating its great potential for practical application.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Letters","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmaterialslett.4c00716","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Developing highly efficient oxygen evolution reaction (OER) electrocatalysts based on earth-abundant elements is critical to improve the efficiency of water electrolysis, but it remains a challenge. Herein, an amorphous ternary oxides composites FeNiCoOx/CoOx with rich oxygen vacancies are developed through a low-cost wet chemical deposition strategy toward this challenge. Benefiting from the synergistic effect of multimetal atom interaction and high exposure of active sites caused by oxygen vacancies and amorphous structure, the as-developed FeNiCoOx/CoOx electrocatalyst exhibits an exceptional catalytic performance with a low overpotential of only 221 mV at a current density of 100 mA cm–2 and negligible performance degradation over 240 h. Furthermore, the FeNiCoOx/CoOx-assembled anion exchange membrane water electrolyzer (AEMWE) can achieve a high current density of 1 A cm–2 at a low voltage of 1.765 V, demonstrating its great potential for practical application.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
富氧空位非晶过渡金属三元氧化物实现高效氧气进化反应
开发基于地球富集元素的高效氧进化反应(OER)电催化剂对于提高电解水的效率至关重要,但这仍然是一项挑战。为应对这一挑战,我们采用低成本湿化学沉积策略,开发出了富氧空位的非晶三元氧化物复合材料 FeNiCoOx/CoOx。得益于多金属原子相互作用的协同效应,以及氧空位和非晶态结构导致的活性位点的高暴露率,所开发的 FeNiCoOx/CoOx 电催化剂表现出了卓越的催化性能,在 100 mA cm-2 的电流密度下,过电位仅为 221 mV,并且在 240 小时内性能衰减几乎可以忽略不计。此外,FeNiCoOx/CoOx 组装的阴离子交换膜水电解槽(AEMWE)可在 1.765 V 的低电压下实现 1 A cm-2 的高电流密度,显示了其巨大的实际应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Materials Letters
ACS Materials Letters MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
14.60
自引率
3.50%
发文量
261
期刊介绍: ACS Materials Letters is a journal that publishes high-quality and urgent papers at the forefront of fundamental and applied research in the field of materials science. It aims to bridge the gap between materials and other disciplines such as chemistry, engineering, and biology. The journal encourages multidisciplinary and innovative research that addresses global challenges. Papers submitted to ACS Materials Letters should clearly demonstrate the need for rapid disclosure of key results. The journal is interested in various areas including the design, synthesis, characterization, and evaluation of emerging materials, understanding the relationships between structure, property, and performance, as well as developing materials for applications in energy, environment, biomedical, electronics, and catalysis. The journal has a 2-year impact factor of 11.4 and is dedicated to publishing transformative materials research with fast processing times. The editors and staff of ACS Materials Letters actively participate in major scientific conferences and engage closely with readers and authors. The journal also maintains an active presence on social media to provide authors with greater visibility.
期刊最新文献
Restoration of Motor and Bladder Functions after Spinal Cord Injury via Sustained Wogonin Release from Carbon Nanotube Incorporated Hydrogels Alumina–Titania Nanolaminate Condensers for Hot Programmable Catalysis Wearable e-Bandage with Antimicrobial Ionogel as an Integrated Electroceutical Device for Accelerated Wound Healing Self-Irrigation and Slow-Release Fertilizer Hydrogels for Sustainable Agriculture Solar-Responsive Interface Self-Assembled MOF-Derived Foam for Adaptive Indoor Humidity Regulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1