Network-based prioritization and validation of regulators of vascular smooth muscle cell proliferation in disease

IF 9.4 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS Nature cardiovascular research Pub Date : 2024-06-06 DOI:10.1038/s44161-024-00474-4
Jordi Lambert, Sebnem Oc, Matthew D. Worssam, Daniel Häußler, Charles U. Solomon, Nichola L. Figg, Ruby Baxter, Maria Imaz, James C. K. Taylor, Kirsty Foote, Alison Finigan, Krishnaa T. Mahbubani, Tom R. Webb, Shu Ye, Martin R. Bennett, Achim Krüger, Mikhail Spivakov, Helle F. Jørgensen
{"title":"Network-based prioritization and validation of regulators of vascular smooth muscle cell proliferation in disease","authors":"Jordi Lambert, Sebnem Oc, Matthew D. Worssam, Daniel Häußler, Charles U. Solomon, Nichola L. Figg, Ruby Baxter, Maria Imaz, James C. K. Taylor, Kirsty Foote, Alison Finigan, Krishnaa T. Mahbubani, Tom R. Webb, Shu Ye, Martin R. Bennett, Achim Krüger, Mikhail Spivakov, Helle F. Jørgensen","doi":"10.1038/s44161-024-00474-4","DOIUrl":null,"url":null,"abstract":"Aberrant vascular smooth muscle cell (VSMC) homeostasis and proliferation characterize vascular diseases causing heart attack and stroke. Here we elucidate molecular determinants governing VSMC proliferation by reconstructing gene regulatory networks from single-cell transcriptomics and epigenetic profiling. We detect widespread activation of enhancers at disease-relevant loci in proliferation-predisposed VSMCs. We compared gene regulatory network rewiring between injury-responsive and nonresponsive VSMCs, which suggested shared transcription factors but differing target loci between VSMC states. Through in silico perturbation analysis, we identified and prioritized previously unrecognized regulators of proliferation, including RUNX1 and TIMP1. Moreover, we showed that the pioneer transcription factor RUNX1 increased VSMC responsiveness and that TIMP1 feeds back to promote VSMC proliferation through CD74-mediated STAT3 signaling. Both RUNX1 and the TIMP1–CD74 axis were expressed in human VSMCs, showing low levels in normal arteries and increased expression in disease, suggesting clinical relevance and potential as vascular disease targets. Lambert, Oc et al. reconstruct gene regulatory networks from single-cell transcriptomics and epigenetic profiling, compare mouse and human data, and report previously unrecognized regulators of vascular smooth muscle cell proliferation in disease.","PeriodicalId":74245,"journal":{"name":"Nature cardiovascular research","volume":"3 6","pages":"714-733"},"PeriodicalIF":9.4000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s44161-024-00474-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature cardiovascular research","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44161-024-00474-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Aberrant vascular smooth muscle cell (VSMC) homeostasis and proliferation characterize vascular diseases causing heart attack and stroke. Here we elucidate molecular determinants governing VSMC proliferation by reconstructing gene regulatory networks from single-cell transcriptomics and epigenetic profiling. We detect widespread activation of enhancers at disease-relevant loci in proliferation-predisposed VSMCs. We compared gene regulatory network rewiring between injury-responsive and nonresponsive VSMCs, which suggested shared transcription factors but differing target loci between VSMC states. Through in silico perturbation analysis, we identified and prioritized previously unrecognized regulators of proliferation, including RUNX1 and TIMP1. Moreover, we showed that the pioneer transcription factor RUNX1 increased VSMC responsiveness and that TIMP1 feeds back to promote VSMC proliferation through CD74-mediated STAT3 signaling. Both RUNX1 and the TIMP1–CD74 axis were expressed in human VSMCs, showing low levels in normal arteries and increased expression in disease, suggesting clinical relevance and potential as vascular disease targets. Lambert, Oc et al. reconstruct gene regulatory networks from single-cell transcriptomics and epigenetic profiling, compare mouse and human data, and report previously unrecognized regulators of vascular smooth muscle cell proliferation in disease.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于网络的疾病中血管平滑肌细胞增殖调节因子的优先排序和验证
血管平滑肌细胞(VSMC)平衡和增殖失调是导致心脏病和中风的血管疾病的特征。在这里,我们通过单细胞转录组学和表观遗传学分析重建基因调控网络,阐明了支配血管平滑肌细胞增殖的分子决定因素。我们在增殖易感的 VSMC 中检测到疾病相关位点的增强子被广泛激活。我们比较了损伤反应性和非反应性 VSMC 之间基因调控网络的重新布线,这表明 VSMC 状态之间存在共享的转录因子和不同的靶位点。通过硅学扰动分析,我们发现了以前未曾认识到的增殖调控因子,包括 RUNX1 和 TIMP1,并确定了它们的优先次序。此外,我们还发现先驱转录因子 RUNX1 增加了 VSMC 的反应性,而 TIMP1 则通过 CD74 介导的 STAT3 信号传导促进 VSMC 增殖。RUNX1 和 TIMP1-CD74 轴在人类 VSMC 中均有表达,在正常动脉中表达量较低,而在疾病中表达量增加,这表明它们具有临床相关性和作为血管疾病靶点的潜力。Lambert, Oc 等人从单细胞转录组学和表观遗传学分析中重建了基因调控网络,比较了小鼠和人类的数据,并报告了以前未认识到的疾病中血管平滑肌细胞增殖的调控因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.70
自引率
0.00%
发文量
0
期刊最新文献
GLS2 links glutamine metabolism and atherosclerosis by remodeling artery walls. Glutamine-glutamate imbalance in the pathogenesis of cardiovascular disease. Cardiac regeneration leads to altered Purkinje fiber network and ventricular conduction Klf9 is essential for cardiac mitochondrial homeostasis Influence of sleep on physiological systems in atherosclerosis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1