Conformal surface intensive doping of low-valence Bi on Cu2O for highly efficient electrochemical nitrate reduction to ammonia production

IF 21.1 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Today Pub Date : 2024-07-01 DOI:10.1016/j.mattod.2024.05.007
Thi Kim Cuong Phu , Won Tae Hong , Hyungu Han , Young In Song , Jong Hun Kim , Seung Hun Roh , Min-Cheol Kim , Jai Hyun Koh , Byung-Keun Oh , Jun Young Kim , Chan-Hwa Chung , Dong Hyun Lee , Jung Kyu Kim
{"title":"Conformal surface intensive doping of low-valence Bi on Cu2O for highly efficient electrochemical nitrate reduction to ammonia production","authors":"Thi Kim Cuong Phu ,&nbsp;Won Tae Hong ,&nbsp;Hyungu Han ,&nbsp;Young In Song ,&nbsp;Jong Hun Kim ,&nbsp;Seung Hun Roh ,&nbsp;Min-Cheol Kim ,&nbsp;Jai Hyun Koh ,&nbsp;Byung-Keun Oh ,&nbsp;Jun Young Kim ,&nbsp;Chan-Hwa Chung ,&nbsp;Dong Hyun Lee ,&nbsp;Jung Kyu Kim","doi":"10.1016/j.mattod.2024.05.007","DOIUrl":null,"url":null,"abstract":"<div><p>Electrochemical nitrate reduction reaction (NO<sub>3</sub>RR) has been regarded as a promising alternative to the Haber-Bosch process for sustainable and clean NH<sub>3</sub> production. To develop highly active and stable electrocatalysts for NO<sub>3</sub><sup>–</sup> to NH<sub>3</sub> production, Cu-based materials have been considered as potential candidates owing to the excellent NO<sub>3</sub><strong><sup>–</sup></strong> adsorption to easily overcome the rate determining step of nitrate to nitrite conversion in NO<sub>3</sub>RR, although the poor NH<sub>3</sub> yield rate is still challenging. In this study, we report a hybrid electrocatalyst with Bi dopant substitutionally incorporated on cuboctahedra Cu<sub>2</sub>O platform (Bi/Cu<sub>2</sub>O) <em>via in-situ</em> hydrothermal method. The Bi/Cu<sub>2</sub>O shows the NH<sub>3</sub> yield rate of 2562.56 μg h<sup>−1</sup> mg<sub>cat</sub><sup>-1</sup> and Faradaic efficiency of 99.2 % at −0.8 V versus reversible hydrogen electrode in a neutral electrolyte, which is the highest performance among previously reported Cu-based electrocatalyst for NO<sub>3</sub>RR to NH<sub>3</sub>. The interfacial synergetic effect of sufficient protonation from Bi-doped overlayer and efficient NO<sub>3</sub><sup>–</sup> adsorption from the Cu<sub>2</sub>O platform results in excellent NO<sub>3</sub>RR performance. The experimental variable investigations with <em>in-situ</em> attenuated total reflectance-Fourier transform infrared measurement elucidate that not only nitrate to nitrite conversion but also the protonation of *NO<sub>2</sub> is the rate limiting step for NH<sub>3</sub> production.</p></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":null,"pages":null},"PeriodicalIF":21.1000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369702124000890","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Electrochemical nitrate reduction reaction (NO3RR) has been regarded as a promising alternative to the Haber-Bosch process for sustainable and clean NH3 production. To develop highly active and stable electrocatalysts for NO3 to NH3 production, Cu-based materials have been considered as potential candidates owing to the excellent NO3 adsorption to easily overcome the rate determining step of nitrate to nitrite conversion in NO3RR, although the poor NH3 yield rate is still challenging. In this study, we report a hybrid electrocatalyst with Bi dopant substitutionally incorporated on cuboctahedra Cu2O platform (Bi/Cu2O) via in-situ hydrothermal method. The Bi/Cu2O shows the NH3 yield rate of 2562.56 μg h−1 mgcat-1 and Faradaic efficiency of 99.2 % at −0.8 V versus reversible hydrogen electrode in a neutral electrolyte, which is the highest performance among previously reported Cu-based electrocatalyst for NO3RR to NH3. The interfacial synergetic effect of sufficient protonation from Bi-doped overlayer and efficient NO3 adsorption from the Cu2O platform results in excellent NO3RR performance. The experimental variable investigations with in-situ attenuated total reflectance-Fourier transform infrared measurement elucidate that not only nitrate to nitrite conversion but also the protonation of *NO2 is the rate limiting step for NH3 production.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在 Cu2O 上共形表面密集掺入低价态 Bi 以实现高效的硝酸盐电化学还原法氨生产
电化学硝酸盐还原反应(NO3RR)被认为是哈伯-博什工艺的一种有前途的替代方法,可用于可持续和清洁的 NH3 生产。为了开发高活性、高稳定性的 NO3- 转化为 NH3 的电催化剂,铜基材料一直被认为是潜在的候选材料,因为它具有优异的 NO3- 吸附性,可以轻松克服 NO3RR 中硝酸盐转化为亚硝酸盐这一决定速率的步骤,尽管 NH3 产率较低仍是一个挑战。在本研究中,我们报告了一种通过原位水热法在立方八面体 Cu2O 平台(Bi/Cu2O)上取代加入 Bi 掺杂剂的混合电催化剂。在中性电解质中,Bi/Cu2O 在-0.8 V电压下对可逆氢电极的 NH3 产率为 2562.56 μg h-1 mgcat-1,法拉第效率为 99.2%,是目前已报道的铜基电催化剂中 NO3RR 转化 NH3 的最高性能。掺杂铋的覆盖层产生的充分质子化和 Cu2O 平台对 NO3- 的高效吸附所产生的界面协同效应使得 NO3RR 性能优异。利用原位衰减全反射-傅立叶变换红外测量法进行的实验变量研究阐明,不仅硝酸盐到亚硝酸盐的转化,*NO2 的质子化也是 NH3 生成的限制速率步骤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Today
Materials Today 工程技术-材料科学:综合
CiteScore
36.30
自引率
1.20%
发文量
237
审稿时长
23 days
期刊介绍: Materials Today is the leading journal in the Materials Today family, focusing on the latest and most impactful work in the materials science community. With a reputation for excellence in news and reviews, the journal has now expanded its coverage to include original research and aims to be at the forefront of the field. We welcome comprehensive articles, short communications, and review articles from established leaders in the rapidly evolving fields of materials science and related disciplines. We strive to provide authors with rigorous peer review, fast publication, and maximum exposure for their work. While we only accept the most significant manuscripts, our speedy evaluation process ensures that there are no unnecessary publication delays.
期刊最新文献
Editorial Board Triboelectrification-induced electroluminescent skin for real-time information recording at a record low pressure threshold of 0.125 kPa Porous materials MOFs and COFs: Energy-saving adsorbents for atmospheric water harvesting The rise of 3D/4D-printed water harvesting materials Self-healing solid-state polymer electrolytes for high-safety and long-cycle lithium-ion batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1