Interfacial dipole moment engineering in self-recoverable mechanoluminescent platform

IF 22 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Today Pub Date : 2024-12-01 DOI:10.1016/j.mattod.2024.09.020
Hong In Jeong , Hye Sung Jung , Cheong Beom Lee , So Jung Kim , Jeong-Sik Jo , Seongkyu Song , Seo-Jin Ko , Dong-Won Kang , Soon Moon Jeong , Jae-Won Jang , Kyeounghak Kim , Jihoon Lee , Hyosung Choi
{"title":"Interfacial dipole moment engineering in self-recoverable mechanoluminescent platform","authors":"Hong In Jeong ,&nbsp;Hye Sung Jung ,&nbsp;Cheong Beom Lee ,&nbsp;So Jung Kim ,&nbsp;Jeong-Sik Jo ,&nbsp;Seongkyu Song ,&nbsp;Seo-Jin Ko ,&nbsp;Dong-Won Kang ,&nbsp;Soon Moon Jeong ,&nbsp;Jae-Won Jang ,&nbsp;Kyeounghak Kim ,&nbsp;Jihoon Lee ,&nbsp;Hyosung Choi","doi":"10.1016/j.mattod.2024.09.020","DOIUrl":null,"url":null,"abstract":"<div><div>Harnessing the potential of mechanoluminescence (ML) for practical applications necessitates innovations that maximize brightness while simplifying the platform. Our study introduces a pioneering interfacial modification technique that enhances the internal triboelectric field in a self-recoverable ML platform based on zinc sulfide@metal oxide phosphor and a polydimethylsiloxane matrix. By chemically functionalizing the surface of metal oxide shells with benzoic acid derivatives, we modulate surface charge density thereby intensifying the triboelectric field within the ML platform. Utilizing a range of derivatives with varying dipole moments establishes a direct relationship between dipole moment strength and triboelectric enhancement. Notably, introducing aminobenzoic acid (ABA) onto the surface of the aluminum oxide (AlO<sub>x</sub>) shell results in a significant increase in ML brightness. Our strategy to easily adjust the ML brightness has been applied to anti-counterfeiting applications. Our study not only reveals the correlation between surface triboelectric fields and ML performance but also provides the possibility for practical use of self-recoverable ML platforms in various application fields, including smart textiles, health monitoring systems, and wearable displays.</div></div>","PeriodicalId":387,"journal":{"name":"Materials Today","volume":"81 ","pages":"Pages 4-11"},"PeriodicalIF":22.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369702124002232","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Harnessing the potential of mechanoluminescence (ML) for practical applications necessitates innovations that maximize brightness while simplifying the platform. Our study introduces a pioneering interfacial modification technique that enhances the internal triboelectric field in a self-recoverable ML platform based on zinc sulfide@metal oxide phosphor and a polydimethylsiloxane matrix. By chemically functionalizing the surface of metal oxide shells with benzoic acid derivatives, we modulate surface charge density thereby intensifying the triboelectric field within the ML platform. Utilizing a range of derivatives with varying dipole moments establishes a direct relationship between dipole moment strength and triboelectric enhancement. Notably, introducing aminobenzoic acid (ABA) onto the surface of the aluminum oxide (AlOx) shell results in a significant increase in ML brightness. Our strategy to easily adjust the ML brightness has been applied to anti-counterfeiting applications. Our study not only reveals the correlation between surface triboelectric fields and ML performance but also provides the possibility for practical use of self-recoverable ML platforms in various application fields, including smart textiles, health monitoring systems, and wearable displays.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自恢复式机械发光平台界面偶极矩工程
利用机械发光(ML)在实际应用中的潜力需要创新,以最大限度地提高亮度,同时简化平台。我们的研究介绍了一种开创性的界面修饰技术,该技术可以增强基于锌sulfide@metal氧化物荧光粉和聚二甲基硅氧烷基质的自恢复ML平台的内部摩擦电场。通过用苯甲酸衍生物化学功能化金属氧化物外壳表面,我们调节表面电荷密度,从而增强ML平台内的摩擦电场。利用一系列具有不同偶极矩的导数,建立了偶极矩强度和摩擦电增强之间的直接关系。值得注意的是,在氧化铝(AlOx)外壳表面引入氨基苯甲酸(ABA)可显著提高ML亮度。我们的策略,轻松调整ML亮度已应用于防伪应用。我们的研究不仅揭示了表面摩擦电场与机器学习性能之间的相关性,而且为自恢复机器学习平台在各种应用领域的实际应用提供了可能性,包括智能纺织品、健康监测系统和可穿戴显示器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Today
Materials Today 工程技术-材料科学:综合
CiteScore
36.30
自引率
1.20%
发文量
237
审稿时长
23 days
期刊介绍: Materials Today is the leading journal in the Materials Today family, focusing on the latest and most impactful work in the materials science community. With a reputation for excellence in news and reviews, the journal has now expanded its coverage to include original research and aims to be at the forefront of the field. We welcome comprehensive articles, short communications, and review articles from established leaders in the rapidly evolving fields of materials science and related disciplines. We strive to provide authors with rigorous peer review, fast publication, and maximum exposure for their work. While we only accept the most significant manuscripts, our speedy evaluation process ensures that there are no unnecessary publication delays.
期刊最新文献
Editorial Board Experimental and computational advancement of cathode materials for futuristic sodium ion batteries Aminophosphonate-Derived lipid nanoparticles enable circular RNA delivery for functional recovery after spinal cord injury Microhole array metasurface-enhanced InAs/GaSb superlattice LWIR detectors with boosted photoresponse via guided-mode resonance coupling Concrete: From infrastructure to structural energy storage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1