Exploring microbial and moist-heat effects on Pu-erh tea volatiles and understanding the methoxybenzene formation mechanism using molecular sensory science
Tiehan Li , Yuming Wei , Mingxia Lu , Yida Wu , Yanqun Jiang , Han Ke , Aiju Shao , Jingming Ning
{"title":"Exploring microbial and moist-heat effects on Pu-erh tea volatiles and understanding the methoxybenzene formation mechanism using molecular sensory science","authors":"Tiehan Li , Yuming Wei , Mingxia Lu , Yida Wu , Yanqun Jiang , Han Ke , Aiju Shao , Jingming Ning","doi":"10.1016/j.fochx.2024.101553","DOIUrl":null,"url":null,"abstract":"<div><p>Piling fermentation (PF) is crucial for Pu-erh tea aroma, yet its microbial and moist-heat impact on aroma quality is poorly understood. Solid-phase microextraction, solvent-assisted flavor evaporation, and gas chromatography–mass spectrometry were used to detected and analyses the samples of sun-green green tea, sterile PF and spontaneous PF. Microbiological action promotes the formation of stale aromas. Moist-heat action promotes the formation of plum-fragrance and sweet aroma. 20 microbial markers and 28 moist-heat markers were screened from 184 volatile components. Combining odor activity values and gas chromatography-olfactometry, 22 aroma-active compounds were screened (1,2,3-trimethoxybenzene, linalool, 1,2,4-trimethoxybenzene …), and analyzed during PF processing. Aroma omission and addition experiments verified its importance. Gallic acid addition experiments successfully verified that microorganisms are the main contributors to the synthesis of methoxybenzenes. Finally, <em>Blastobotrys, Rasamsonia</em>, and <em>Thermomyces</em> showed positive correlation with the synthesis of 1-ethyl-4-methoxybenzene, 1,2,4-trimethoxybenzene, 1,2,3-trimethoxybenzene, and 1,2-dimethoxybenzene. The formation mechanism of Pu-erh tea's aroma was clarified.</p><p>Exploring microbial and moist-heat effects on Pu-erh tea volatiles and understanding the methoxybenzene formation mechanism using molecular sensory science.</p></div>","PeriodicalId":12334,"journal":{"name":"Food Chemistry: X","volume":"23 ","pages":"Article 101553"},"PeriodicalIF":6.5000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590157524004413/pdfft?md5=32bb25d92bbc7d63535f061e0dc7de5c&pid=1-s2.0-S2590157524004413-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food Chemistry: X","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590157524004413","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Piling fermentation (PF) is crucial for Pu-erh tea aroma, yet its microbial and moist-heat impact on aroma quality is poorly understood. Solid-phase microextraction, solvent-assisted flavor evaporation, and gas chromatography–mass spectrometry were used to detected and analyses the samples of sun-green green tea, sterile PF and spontaneous PF. Microbiological action promotes the formation of stale aromas. Moist-heat action promotes the formation of plum-fragrance and sweet aroma. 20 microbial markers and 28 moist-heat markers were screened from 184 volatile components. Combining odor activity values and gas chromatography-olfactometry, 22 aroma-active compounds were screened (1,2,3-trimethoxybenzene, linalool, 1,2,4-trimethoxybenzene …), and analyzed during PF processing. Aroma omission and addition experiments verified its importance. Gallic acid addition experiments successfully verified that microorganisms are the main contributors to the synthesis of methoxybenzenes. Finally, Blastobotrys, Rasamsonia, and Thermomyces showed positive correlation with the synthesis of 1-ethyl-4-methoxybenzene, 1,2,4-trimethoxybenzene, 1,2,3-trimethoxybenzene, and 1,2-dimethoxybenzene. The formation mechanism of Pu-erh tea's aroma was clarified.
Exploring microbial and moist-heat effects on Pu-erh tea volatiles and understanding the methoxybenzene formation mechanism using molecular sensory science.
期刊介绍:
Food Chemistry: X, one of three Open Access companion journals to Food Chemistry, follows the same aims, scope, and peer-review process. It focuses on papers advancing food and biochemistry or analytical methods, prioritizing research novelty. Manuscript evaluation considers novelty, scientific rigor, field advancement, and reader interest. Excluded are studies on food molecular sciences or disease cure/prevention. Topics include food component chemistry, bioactives, processing effects, additives, contaminants, and analytical methods. The journal welcome Analytical Papers addressing food microbiology, sensory aspects, and more, emphasizing new methods with robust validation and applicability to diverse foods or regions.