Spatial non-stationarity test of regression relationships in the multiscale geographically weighted regression model

IF 2.1 2区 数学 Q3 GEOSCIENCES, MULTIDISCIPLINARY Spatial Statistics Pub Date : 2024-06-13 DOI:10.1016/j.spasta.2024.100846
Feng Chen , Yee Leung , Qiang Wang , Yu Zhou
{"title":"Spatial non-stationarity test of regression relationships in the multiscale geographically weighted regression model","authors":"Feng Chen ,&nbsp;Yee Leung ,&nbsp;Qiang Wang ,&nbsp;Yu Zhou","doi":"10.1016/j.spasta.2024.100846","DOIUrl":null,"url":null,"abstract":"<div><p>By allowing covariate-specific bandwidths for estimating spatially varying coefficients, the multiscale geographically weighted regression (MGWR) model can simultaneously explore spatial non-stationarity and multiple operational scales of the corresponding geographical processes. Treating the constant coefficients as an extreme situation which corresponds to the global scale and infinite covariate bandwidth, the traditional linear regression, GWR and mixed GWR models are special cases of the MGWR model. An appropriately-specified GWR-based model would be beneficial to the understanding of the general underlying processes, especially for their operational scales. To specify an appropriate model, the key issue is to determine how many MGWR coefficient(s) should be constant. Along the traditional statistical line of thought, we propose a residual-based bootstrap method to test spatial non-stationarity of the MGWR coefficients, which can underpin our understanding of the characteristics of regression relationships in statistics. The simulation experiment validates the proposed test, and demonstrates that it is of valid Type I error and satisfactory power, and is robust to different types of model error distributions. The applicability of the proposed test is demonstrated in a real-world case study on the Shanghai housing prices.</p></div>","PeriodicalId":48771,"journal":{"name":"Spatial Statistics","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spatial Statistics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221167532400037X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

By allowing covariate-specific bandwidths for estimating spatially varying coefficients, the multiscale geographically weighted regression (MGWR) model can simultaneously explore spatial non-stationarity and multiple operational scales of the corresponding geographical processes. Treating the constant coefficients as an extreme situation which corresponds to the global scale and infinite covariate bandwidth, the traditional linear regression, GWR and mixed GWR models are special cases of the MGWR model. An appropriately-specified GWR-based model would be beneficial to the understanding of the general underlying processes, especially for their operational scales. To specify an appropriate model, the key issue is to determine how many MGWR coefficient(s) should be constant. Along the traditional statistical line of thought, we propose a residual-based bootstrap method to test spatial non-stationarity of the MGWR coefficients, which can underpin our understanding of the characteristics of regression relationships in statistics. The simulation experiment validates the proposed test, and demonstrates that it is of valid Type I error and satisfactory power, and is robust to different types of model error distributions. The applicability of the proposed test is demonstrated in a real-world case study on the Shanghai housing prices.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多尺度地理加权回归模型中回归关系的空间非平稳性检验
多尺度地理加权回归(MGWR)模型通过允许特定协变量带宽来估计空间变化系数,可以同时探索相应地理过程的空间非平稳性和多种操作尺度。将常数系数视为对应于全球尺度和无限协变量带宽的极端情况,传统的线性回归、GWR 和混合 GWR 模型都是 MGWR 模型的特例。一个基于 GWR 的适当指定模型将有助于理解一般的基本过程,特别是其运行尺度。要指定一个合适的模型,关键问题是确定有多少 MGWR 系数应该是常数。按照传统的统计思路,我们提出了一种基于残差的引导方法来检验 MGWR 系数的空间非平稳性,这可以巩固我们对统计学中回归关系特征的理解。模拟实验验证了所提出的检验方法,证明其具有有效的 I 类误差和令人满意的功率,并对不同类型的模型误差分布具有稳健性。通过对上海房价的实际案例研究,证明了所提检验的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Spatial Statistics
Spatial Statistics GEOSCIENCES, MULTIDISCIPLINARY-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
4.00
自引率
21.70%
发文量
89
审稿时长
55 days
期刊介绍: Spatial Statistics publishes articles on the theory and application of spatial and spatio-temporal statistics. It favours manuscripts that present theory generated by new applications, or in which new theory is applied to an important practical case. A purely theoretical study will only rarely be accepted. Pure case studies without methodological development are not acceptable for publication. Spatial statistics concerns the quantitative analysis of spatial and spatio-temporal data, including their statistical dependencies, accuracy and uncertainties. Methodology for spatial statistics is typically found in probability theory, stochastic modelling and mathematical statistics as well as in information science. Spatial statistics is used in mapping, assessing spatial data quality, sampling design optimisation, modelling of dependence structures, and drawing of valid inference from a limited set of spatio-temporal data.
期刊最新文献
Uncovering hidden alignments in two-dimensional point fields Spatio-temporal data fusion for the analysis of in situ and remote sensing data using the INLA-SPDE approach Exploiting nearest-neighbour maps for estimating the variance of sample mean in equal-probability systematic sampling of spatial populations Variable selection of nonparametric spatial autoregressive models via deep learning Estimation and inference of multi-effect generalized geographically and temporally weighted regression models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1