Accumulation and Phagocytosis of Fluorescently Visualized Macrophages Against Edwardsiella piscicida Infection in Established mpeg1.1-Transgenic Japanese Medaka Oryzias latipes.

IF 2.6 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Marine Biotechnology Pub Date : 2024-08-01 Epub Date: 2024-06-18 DOI:10.1007/s10126-024-10333-9
Juna Yamamoto, Hana Deguchi, Takechiyo Sumiyoshi, Kentaro Nakagami, Akatsuki Saito, Hiroshi Miyanishi, Masakazu Kondo, Tomoya Kono, Masahiro Sakai, Masato Kinoshita, Jun-Ichi Hikima
{"title":"Accumulation and Phagocytosis of Fluorescently Visualized Macrophages Against Edwardsiella piscicida Infection in Established mpeg1.1-Transgenic Japanese Medaka Oryzias latipes.","authors":"Juna Yamamoto, Hana Deguchi, Takechiyo Sumiyoshi, Kentaro Nakagami, Akatsuki Saito, Hiroshi Miyanishi, Masakazu Kondo, Tomoya Kono, Masahiro Sakai, Masato Kinoshita, Jun-Ichi Hikima","doi":"10.1007/s10126-024-10333-9","DOIUrl":null,"url":null,"abstract":"<p><p>Intracellular bacteria such as those belonging to the genus Edwardsiella can survive and proliferate within macrophages. However, the detailed mechanisms underlying the host macrophage immune response and pathogen evasion strategies remain unknown. To advance the field of host macrophage research, we successfully established transgenic (Tg) Japanese medaka Oryzias latipes that possesses fluorescently visualized macrophages. As a macrophage marker, the macrophage-expressed gene 1.1 (mpeg1.1) was selected because of its predominant expression across various tissues in medaka. To validate the macrophage characteristics of the fluorescently labeled cells, May-Grünwald Giemsa staining and peroxidase staining were conducted. The labeled cells exhibited morphological features consistent with those of monocyte/macrophage-like cells and tested negative for peroxidase activity. Through co-localization studies, the fluorescently labeled cells co-localized with E. piscicida in the intestines and kidneys of infected medaka larvae, confirming the ingestion of bacteria through phagocytosis. In addition, the labeled cells expressed macrophage markers but lacked a neutrophil marker. These results suggested that the fluorescently labeled cells of Tg[mpeg1.1:mCherry/mAG] medaka were monocytes/macrophages, which will be useful for future studies aimed at understanding the mechanisms of macrophage-mediated bacterial infections.</p>","PeriodicalId":690,"journal":{"name":"Marine Biotechnology","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Biotechnology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10126-024-10333-9","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/18 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Intracellular bacteria such as those belonging to the genus Edwardsiella can survive and proliferate within macrophages. However, the detailed mechanisms underlying the host macrophage immune response and pathogen evasion strategies remain unknown. To advance the field of host macrophage research, we successfully established transgenic (Tg) Japanese medaka Oryzias latipes that possesses fluorescently visualized macrophages. As a macrophage marker, the macrophage-expressed gene 1.1 (mpeg1.1) was selected because of its predominant expression across various tissues in medaka. To validate the macrophage characteristics of the fluorescently labeled cells, May-Grünwald Giemsa staining and peroxidase staining were conducted. The labeled cells exhibited morphological features consistent with those of monocyte/macrophage-like cells and tested negative for peroxidase activity. Through co-localization studies, the fluorescently labeled cells co-localized with E. piscicida in the intestines and kidneys of infected medaka larvae, confirming the ingestion of bacteria through phagocytosis. In addition, the labeled cells expressed macrophage markers but lacked a neutrophil marker. These results suggested that the fluorescently labeled cells of Tg[mpeg1.1:mCherry/mAG] medaka were monocytes/macrophages, which will be useful for future studies aimed at understanding the mechanisms of macrophage-mediated bacterial infections.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
荧光显微巨噬细胞的积累和吞噬作用对抗 mpeg1.1 转基因日本青鳉的 Edwardsiella piscicida 感染。
细胞内细菌(如爱德华氏菌属)可以在巨噬细胞内存活和增殖。然而,宿主巨噬细胞免疫反应和病原体逃避策略的详细机制仍然未知。为了推动宿主巨噬细胞研究领域的发展,我们成功建立了转基因(Tg)日本青鳉,这种青鳉具有荧光可视化巨噬细胞。我们选择了巨噬细胞表达基因 1.1(mpeg1.1)作为标记,因为它在青鳉的各种组织中都有主要表达。为了验证荧光标记细胞的巨噬细胞特征,进行了梅氏吉氏染色和过氧化物酶染色。标记细胞的形态特征与单核/巨噬细胞样细胞一致,过氧化物酶活性检测呈阴性。通过共定位研究,荧光标记细胞与受感染青鳉幼体肠道和肾脏中的鱼腥酵母菌共定位,证实了青鳉幼体通过吞噬作用摄取了细菌。此外,标记细胞表达巨噬细胞标记,但缺乏中性粒细胞标记。这些结果表明,Tg[mpeg1.1:mCherry/mAG]青鳉的荧光标记细胞是单核细胞/巨噬细胞,这将有助于今后了解巨噬细胞介导的细菌感染机制的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Marine Biotechnology
Marine Biotechnology 工程技术-海洋与淡水生物学
CiteScore
4.80
自引率
3.30%
发文量
95
审稿时长
2 months
期刊介绍: Marine Biotechnology welcomes high-quality research papers presenting novel data on the biotechnology of aquatic organisms. The journal publishes high quality papers in the areas of molecular biology, genomics, proteomics, cell biology, and biochemistry, and particularly encourages submissions of papers related to genome biology such as linkage mapping, large-scale gene discoveries, QTL analysis, physical mapping, and comparative and functional genome analysis. Papers on technological development and marine natural products should demonstrate innovation and novel applications.
期刊最新文献
Genome Mining Analysis Uncovers the Previously Unknown Biosynthetic Capacity for Secondary Metabolites in Verrucomicrobia. Effects of Dietary 5-Aminolevulinic Acid on Growth, Nutrient Composition, and Intestinal Microflora in Juvenile Shrimp, Litopenaeus vannamei. Genome-Wide Characterization of ABC Transporter Genes and Expression Profiles in Red Macroalga Pyropia yezoensis Expose to Low-Temperature Identification of a Novel β-Defensin Gene in Gilthead Seabream (Sparus aurata) Chnoospora minima: a Robust Candidate for Hyperglycemia Management, Unveiling Potent Inhibitory Compounds and Their Therapeutic Potential
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1