Comparative Analysis of Promoter Activity in Crassostrea gigas Embryos: Implications for Bivalve Gene Editing

IF 2.6 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Marine Biotechnology Pub Date : 2024-12-13 DOI:10.1007/s10126-024-10398-6
Yongzhen Yu, Qian Li, Hong Yu, Qi Li
{"title":"Comparative Analysis of Promoter Activity in Crassostrea gigas Embryos: Implications for Bivalve Gene Editing","authors":"Yongzhen Yu,&nbsp;Qian Li,&nbsp;Hong Yu,&nbsp;Qi Li","doi":"10.1007/s10126-024-10398-6","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years, CRISPR/Cas9 gene editing technology has emerged as a powerful genetic tool with potential application in aquaculture. <i>Crassostrea gigas</i>, as a valuable species in aquaculture, holds promising potential for genetic enhancement and breeding through gene editing. However, the lack of efficient promoters for driving exogenous gene expression poses a major obstacle in bivalve gene editing. In this study, we isolated the promoter sequences of the β-tub and histone H3.3A genes from <i>C</i>. <i>gigas</i>. DNA expression constructs were generated by linking the promoters with the enhanced green fluorescent protein (EGFP) reporter and compared with the promoter activity of the endogenous EF-1α gene and an exogenous OsHV-1 promoter in <i>C</i>. <i>gigas</i> embryos. All four promoters effectively drive the expression of EGFP during early embryonic development in <i>C</i>. <i>gigas</i>. Among these four promoters, the β-tub promoter is the most potent promoter in driving EGFP expression in <i>C. gigas</i> embryos as early as 4.5 h after fertilization. The OsHV-1 promoter showed similar activity as β-tub promoter and appeared to be more active than the EF-1α and histone H3.3A promoters in <i>C</i>. <i>gigas</i> embryos. Furthermore, we assessed their performance in other three <i>C</i>. <i>gigas</i> relatives (<i>Crassostrea ariakensis</i>, <i>Crassostrea nippona</i>, and <i>Crassostrea sikamea</i>) and similar results were found. Collectively, these data suggest that the β-tub promoter is an effective promoter in directing gene expression in directing gene expression in oyster embryos, thus offering a potential application for gene editing in bivalves.</p></div>","PeriodicalId":690,"journal":{"name":"Marine Biotechnology","volume":"27 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Biotechnology","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10126-024-10398-6","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, CRISPR/Cas9 gene editing technology has emerged as a powerful genetic tool with potential application in aquaculture. Crassostrea gigas, as a valuable species in aquaculture, holds promising potential for genetic enhancement and breeding through gene editing. However, the lack of efficient promoters for driving exogenous gene expression poses a major obstacle in bivalve gene editing. In this study, we isolated the promoter sequences of the β-tub and histone H3.3A genes from C. gigas. DNA expression constructs were generated by linking the promoters with the enhanced green fluorescent protein (EGFP) reporter and compared with the promoter activity of the endogenous EF-1α gene and an exogenous OsHV-1 promoter in C. gigas embryos. All four promoters effectively drive the expression of EGFP during early embryonic development in C. gigas. Among these four promoters, the β-tub promoter is the most potent promoter in driving EGFP expression in C. gigas embryos as early as 4.5 h after fertilization. The OsHV-1 promoter showed similar activity as β-tub promoter and appeared to be more active than the EF-1α and histone H3.3A promoters in C. gigas embryos. Furthermore, we assessed their performance in other three C. gigas relatives (Crassostrea ariakensis, Crassostrea nippona, and Crassostrea sikamea) and similar results were found. Collectively, these data suggest that the β-tub promoter is an effective promoter in directing gene expression in directing gene expression in oyster embryos, thus offering a potential application for gene editing in bivalves.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Marine Biotechnology
Marine Biotechnology 工程技术-海洋与淡水生物学
CiteScore
4.80
自引率
3.30%
发文量
95
审稿时长
2 months
期刊介绍: Marine Biotechnology welcomes high-quality research papers presenting novel data on the biotechnology of aquatic organisms. The journal publishes high quality papers in the areas of molecular biology, genomics, proteomics, cell biology, and biochemistry, and particularly encourages submissions of papers related to genome biology such as linkage mapping, large-scale gene discoveries, QTL analysis, physical mapping, and comparative and functional genome analysis. Papers on technological development and marine natural products should demonstrate innovation and novel applications.
期刊最新文献
Rapid Sex Identification in Spotted Knifejaw (Oplegnathus punctatus) Using tmem88 Gene Structural Variation Markers Correction to: Differentially Expressed Genes and Alternative Splicing Analysis Revealed the Difference in Virulence to American Eels (Anguilla rostrata) Infected by Edwardsiella anguillarum and Aeromonas hydrophila Functional Characterization of Galectin-8 from Golden Pompano Trachinotus ovatus Reveals Its Broad-Spectrum Antimicrobial Activity Comparative Analysis of Promoter Activity in Crassostrea gigas Embryos: Implications for Bivalve Gene Editing Biodegradation of Di-2-Ethylhexyl Phthalate by Mangrove Sediment Microbiome Impacted by Chronic Plastic Waste
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1