{"title":"Enhancement of poly‑γ‑L‑diaminobutanoic acid production in Bacillus pumilus by repeated pH shocks.","authors":"Shu Li, Nan Wang, Xiaoting Li","doi":"10.1007/s00449-024-03050-z","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigated the effect of pH on poly-γ-L-diaminobutanoic acid (γ-PAB) production by Bacillus pumilus in batch fermentation. In the natural fermentation where pH was not controlled, pH decreased from initial 7.0 to 3.0 in 18 h and γ-PAB production was 428.6 mg/L. In the pH-controlled fermentation, B. pumilus tended to proliferation at higher pH, while γ-PAB synthesis was favorable at lower pH, in which the optimal pH for γ-PAB production was 4.2, and γ-PAB yield reached 2284.5 mg/L. Adopting a pH shock strategy which lasted 9 h in the pre-fermentation phase, biomass (OD<sub>600</sub>) and γ-PAB yield of B. pumilus were obtained as 61.3 and 2794.6 mg/L, respectively, which were 10.8% and 22.4% higher than those in batch fermentation without pH shock. Subsequent fermentation of repeated pH shocks showed that a further higher productivity could be achieved, in which the final OD<sub>600</sub> reached 65.1, and γ-PAB production reached as high as 3482.3 mg/L, which were increased by 6.2% and 17.1% compared with those in single pH shock, respectively. This study demonstrated that B. pumilus can synthesize more γ-PAB at suboptimal pH and provided a novel approach to regulate γ-PAB synthesis.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioprocess and Biosystems Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00449-024-03050-z","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/21 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigated the effect of pH on poly-γ-L-diaminobutanoic acid (γ-PAB) production by Bacillus pumilus in batch fermentation. In the natural fermentation where pH was not controlled, pH decreased from initial 7.0 to 3.0 in 18 h and γ-PAB production was 428.6 mg/L. In the pH-controlled fermentation, B. pumilus tended to proliferation at higher pH, while γ-PAB synthesis was favorable at lower pH, in which the optimal pH for γ-PAB production was 4.2, and γ-PAB yield reached 2284.5 mg/L. Adopting a pH shock strategy which lasted 9 h in the pre-fermentation phase, biomass (OD600) and γ-PAB yield of B. pumilus were obtained as 61.3 and 2794.6 mg/L, respectively, which were 10.8% and 22.4% higher than those in batch fermentation without pH shock. Subsequent fermentation of repeated pH shocks showed that a further higher productivity could be achieved, in which the final OD600 reached 65.1, and γ-PAB production reached as high as 3482.3 mg/L, which were increased by 6.2% and 17.1% compared with those in single pH shock, respectively. This study demonstrated that B. pumilus can synthesize more γ-PAB at suboptimal pH and provided a novel approach to regulate γ-PAB synthesis.
期刊介绍:
Bioprocess and Biosystems Engineering provides an international peer-reviewed forum to facilitate the discussion between engineering and biological science to find efficient solutions in the development and improvement of bioprocesses. The aim of the journal is to focus more attention on the multidisciplinary approaches for integrative bioprocess design. Of special interest are the rational manipulation of biosystems through metabolic engineering techniques to provide new biocatalysts as well as the model based design of bioprocesses (up-stream processing, bioreactor operation and downstream processing) that will lead to new and sustainable production processes.
Contributions are targeted at new approaches for rational and evolutive design of cellular systems by taking into account the environment and constraints of technical production processes, integration of recombinant technology and process design, as well as new hybrid intersections such as bioinformatics and process systems engineering. Manuscripts concerning the design, simulation, experimental validation, control, and economic as well as ecological evaluation of novel processes using biosystems or parts thereof (e.g., enzymes, microorganisms, mammalian cells, plant cells, or tissue), their related products, or technical devices are also encouraged.
The Editors will consider papers for publication based on novelty, their impact on biotechnological production and their contribution to the advancement of bioprocess and biosystems engineering science. Submission of papers dealing with routine aspects of bioprocess engineering (e.g., routine application of established methodologies, and description of established equipment) are discouraged.