Green NiO nanoparticle-integrated PVA-alginate hydrogel: potent nanocatalyst for efficient reduction of anthropogenic water pollutants.

IF 3.5 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Bioprocess and Biosystems Engineering Pub Date : 2024-09-01 Epub Date: 2024-06-21 DOI:10.1007/s00449-024-03046-9
Ganeswar Dalei, Monalisa Jena, Debasis Jena, Navneel Kaur, M Swadhin Shakti Prasad, Ayushman Sahu, Bijnyan Ranjan Das, Subhraseema Das
{"title":"Green NiO nanoparticle-integrated PVA-alginate hydrogel: potent nanocatalyst for efficient reduction of anthropogenic water pollutants.","authors":"Ganeswar Dalei, Monalisa Jena, Debasis Jena, Navneel Kaur, M Swadhin Shakti Prasad, Ayushman Sahu, Bijnyan Ranjan Das, Subhraseema Das","doi":"10.1007/s00449-024-03046-9","DOIUrl":null,"url":null,"abstract":"<p><p>Hydrogel nanocatalyst composed of nickel oxide (NiO) nanoparticles embedded in PVA-alginate hydrogels were potentially explored toward the reduction of anthropogenic water pollutants. The NiO nanoparticles was accomplished via green method using waste pineapple peel extract. The formation of the nanoparticles was affirmed from different analytical techniques such as UV-Vis, FTIR, XRD, TGA, FESEM, and EDS. Spherical NiO nanoparticles were obtained having an average size of 11.5 nm. The nano NiO were then integrated into PVA-alginate hydrogel matrix forming a nanocomposite hydrogel (PVALg@ NiO). The integration of nano NiO rendered an improved thermal stability to the parent hydrogel. The PVALg@ NiO hydrogel was utilized as a catalyst in the reduction of 4-nitrophenol (4-NP), potassium hexacyanoferrate (III), rhodamine B (RhB), methyl orange (MO), and malachite green (MG) in the presence of a reducing agent, i.e., NaBH<sub>4</sub>. Under optimized conditions, the reduction reactions were completed by 4.0 min and 3.0 min for 4-NP and potassium hexacyanoferrate (III), respectively, and the rate constant was estimated to be 1.14 min<sup>-1</sup> and 2.15 min<sup>-1</sup>. The rate of reduction was found to be faster for the dyes and the respective rate constants were be 0.17 s<sup>-1</sup> for RhB, MG and 0.05 s<sup>-1</sup> for MO. The PVALg@ NiO hydrogel nanocatalyst demonstrated a recyclability of four runs without any perceptible diminution in its catalytic mettle. The efficacy of the PVALg@ NiO hydrogel nanocatalyst was further examined for the reduction of dyes in real water samples collected from different sources and the results affirm its high catalytic potential. Thus, this study paves the path for the development of a sustainable hydrogel nanocatalyst for reduction of hazardous pollutants in wastewater treatment.</p>","PeriodicalId":9024,"journal":{"name":"Bioprocess and Biosystems Engineering","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioprocess and Biosystems Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00449-024-03046-9","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/6/21 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrogel nanocatalyst composed of nickel oxide (NiO) nanoparticles embedded in PVA-alginate hydrogels were potentially explored toward the reduction of anthropogenic water pollutants. The NiO nanoparticles was accomplished via green method using waste pineapple peel extract. The formation of the nanoparticles was affirmed from different analytical techniques such as UV-Vis, FTIR, XRD, TGA, FESEM, and EDS. Spherical NiO nanoparticles were obtained having an average size of 11.5 nm. The nano NiO were then integrated into PVA-alginate hydrogel matrix forming a nanocomposite hydrogel (PVALg@ NiO). The integration of nano NiO rendered an improved thermal stability to the parent hydrogel. The PVALg@ NiO hydrogel was utilized as a catalyst in the reduction of 4-nitrophenol (4-NP), potassium hexacyanoferrate (III), rhodamine B (RhB), methyl orange (MO), and malachite green (MG) in the presence of a reducing agent, i.e., NaBH4. Under optimized conditions, the reduction reactions were completed by 4.0 min and 3.0 min for 4-NP and potassium hexacyanoferrate (III), respectively, and the rate constant was estimated to be 1.14 min-1 and 2.15 min-1. The rate of reduction was found to be faster for the dyes and the respective rate constants were be 0.17 s-1 for RhB, MG and 0.05 s-1 for MO. The PVALg@ NiO hydrogel nanocatalyst demonstrated a recyclability of four runs without any perceptible diminution in its catalytic mettle. The efficacy of the PVALg@ NiO hydrogel nanocatalyst was further examined for the reduction of dyes in real water samples collected from different sources and the results affirm its high catalytic potential. Thus, this study paves the path for the development of a sustainable hydrogel nanocatalyst for reduction of hazardous pollutants in wastewater treatment.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
绿色氧化镍纳米粒子集成 PVA-海藻酸盐水凝胶:高效减少人为水污染物的强效纳米催化剂。
由嵌入 PVA-海藻酸盐水凝胶的氧化镍(NiO)纳米颗粒组成的水凝胶纳米催化剂在减少人为水污染物方面具有潜力。纳米氧化镍颗粒是利用废弃菠萝皮提取物通过绿色方法制成的。紫外可见光、傅立叶变换红外光谱、X 射线衍射、热重分析、有限电子显微镜和电致发光等分析技术证实了纳米粒子的形成。获得的球形氧化镍纳米粒子的平均尺寸为 11.5 纳米。纳米氧化镍随后被整合到 PVA-海藻酸盐水凝胶基质中,形成纳米复合水凝胶(PVALg@ NiO)。纳米氧化镍的加入提高了母体水凝胶的热稳定性。PVALg@ NiO 水凝胶被用作催化剂,在还原剂 NaBH4 的存在下还原 4-硝基苯酚 (4-NP)、六氰基铁酸钾 (III)、罗丹明 B (RhB)、甲基橙 (MO) 和孔雀石绿 (MG)。在优化条件下,4-NP 和六氰合铁酸钾 (III) 的还原反应分别在 4.0 分钟和 3.0 分钟内完成,速率常数分别为 1.14 分钟-1 和 2.15 分钟-1。染料的还原速度较快,RhB、MG 和 MO 的还原速率常数分别为 0.17 s-1 和 0.05 s-1。PVALg@ NiO 水凝胶纳米催化剂可循环使用四次,其催化性能没有明显下降。研究人员还进一步检测了 PVALg@ NiO 水凝胶纳米催化剂还原不同来源真实水样中染料的功效,结果证实了它具有很高的催化潜力。因此,这项研究为开发一种可持续的水凝胶纳米催化剂来减少废水处理中的有害污染物铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Bioprocess and Biosystems Engineering
Bioprocess and Biosystems Engineering 工程技术-工程:化工
CiteScore
7.90
自引率
2.60%
发文量
147
审稿时长
2.6 months
期刊介绍: Bioprocess and Biosystems Engineering provides an international peer-reviewed forum to facilitate the discussion between engineering and biological science to find efficient solutions in the development and improvement of bioprocesses. The aim of the journal is to focus more attention on the multidisciplinary approaches for integrative bioprocess design. Of special interest are the rational manipulation of biosystems through metabolic engineering techniques to provide new biocatalysts as well as the model based design of bioprocesses (up-stream processing, bioreactor operation and downstream processing) that will lead to new and sustainable production processes. Contributions are targeted at new approaches for rational and evolutive design of cellular systems by taking into account the environment and constraints of technical production processes, integration of recombinant technology and process design, as well as new hybrid intersections such as bioinformatics and process systems engineering. Manuscripts concerning the design, simulation, experimental validation, control, and economic as well as ecological evaluation of novel processes using biosystems or parts thereof (e.g., enzymes, microorganisms, mammalian cells, plant cells, or tissue), their related products, or technical devices are also encouraged. The Editors will consider papers for publication based on novelty, their impact on biotechnological production and their contribution to the advancement of bioprocess and biosystems engineering science. Submission of papers dealing with routine aspects of bioprocess engineering (e.g., routine application of established methodologies, and description of established equipment) are discouraged.
期刊最新文献
A Review of Fucoxanthin Biomanufacturing from Phaeodactylum tricornutum. Isolation of native microorganisms from Shengli lignite and study on their ability to dissolve lignite. Enhancement of ε-poly-L-lysine production by Streptomyces albulus FQF-24 with feeding strategies using cassava starch as carbon source. Consolidated bioprocessing of lignocellulosic wastes in Northwest China for D-glucaric acid production by an artificial microbial consortium. Encapsulation of Candida antarctica lipase B in metal-organic framework under ultrasound and using it to one-pot synthesis of 1,3,4,5-tetrasubstituted pyrazoles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1