Sexual dimorphism in the tardigrade Paramacrobiotus metropolitanus transcriptome.

IF 1.7 3区 生物学 Q2 ZOOLOGY Zoological Letters Pub Date : 2024-06-20 DOI:10.1186/s40851-024-00233-0
Kenta Sugiura, Yuki Yoshida, Kohei Hayashi, Kazuharu Arakawa, Takekazu Kunieda, Midori Matsumoto
{"title":"Sexual dimorphism in the tardigrade Paramacrobiotus metropolitanus transcriptome.","authors":"Kenta Sugiura, Yuki Yoshida, Kohei Hayashi, Kazuharu Arakawa, Takekazu Kunieda, Midori Matsumoto","doi":"10.1186/s40851-024-00233-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>In gonochoristic animals, the sex determination pathway induces different morphological and behavioral features that can be observed between sexes, a condition known as sexual dimorphism. While many components of this sex differentiation cascade show high levels of diversity, factors such as the Doublesex-Mab-3-Related Transcription factor (DMRT) are widely conserved across animal taxa. Species of the phylum Tardigrada exhibit remarkable diversity in morphology and behavior between sexes, suggesting a pathway regulating this dimorphism. Despite the wealth of genomic and zoological knowledge accumulated in recent studies, the sexual differences in tardigrades genomes have not been identified. In the present study, we focused on the gonochoristic species Paramacrobiotus metropolitanus and employed omics analyses to unravel the molecular basis of sexual dimorphism.</p><p><strong>Results: </strong>Transcriptome analysis between sex-identified specimens revealed numerous differentially expressed genes, of which approximately 2,000 male-biased genes were focused on 29 non-male-specific genomic loci. From these regions, we identified two Macrobiotidae family specific DMRT paralogs, which were significantly upregulated in males and lacked sex specific splicing variants. Furthermore, phylogenetic analysis indicated all tardigrade genomes lack the doublesex ortholog, suggesting doublesex emerged after the divergence of Tardigrada. In contrast to sex-specific expression, no evidence of genomic differences between the sexes was found. We also identified several anhydrobiosis genes that exhibit sex-biased expression, suggesting a possible mechanism for protection of sex-specific tissues against extreme stress.</p><p><strong>Conclusions: </strong>This study provides a comprehensive analysis for analyzing the genetic differences between sexes in tardigrades. The existence of male-biased, but not male-specific, genomic loci and identification of the family specific male-biased DMRT subfamily provides the foundation for understanding the sex determination cascade. In addition, sex-biased expression of several tardigrade-specific genes which are involved their stress tolerance suggests a potential role in protecting sex-specific tissue and gametes.</p>","PeriodicalId":54280,"journal":{"name":"Zoological Letters","volume":"10 1","pages":"11"},"PeriodicalIF":1.7000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11191345/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zoological Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40851-024-00233-0","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ZOOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: In gonochoristic animals, the sex determination pathway induces different morphological and behavioral features that can be observed between sexes, a condition known as sexual dimorphism. While many components of this sex differentiation cascade show high levels of diversity, factors such as the Doublesex-Mab-3-Related Transcription factor (DMRT) are widely conserved across animal taxa. Species of the phylum Tardigrada exhibit remarkable diversity in morphology and behavior between sexes, suggesting a pathway regulating this dimorphism. Despite the wealth of genomic and zoological knowledge accumulated in recent studies, the sexual differences in tardigrades genomes have not been identified. In the present study, we focused on the gonochoristic species Paramacrobiotus metropolitanus and employed omics analyses to unravel the molecular basis of sexual dimorphism.

Results: Transcriptome analysis between sex-identified specimens revealed numerous differentially expressed genes, of which approximately 2,000 male-biased genes were focused on 29 non-male-specific genomic loci. From these regions, we identified two Macrobiotidae family specific DMRT paralogs, which were significantly upregulated in males and lacked sex specific splicing variants. Furthermore, phylogenetic analysis indicated all tardigrade genomes lack the doublesex ortholog, suggesting doublesex emerged after the divergence of Tardigrada. In contrast to sex-specific expression, no evidence of genomic differences between the sexes was found. We also identified several anhydrobiosis genes that exhibit sex-biased expression, suggesting a possible mechanism for protection of sex-specific tissues against extreme stress.

Conclusions: This study provides a comprehensive analysis for analyzing the genetic differences between sexes in tardigrades. The existence of male-biased, but not male-specific, genomic loci and identification of the family specific male-biased DMRT subfamily provides the foundation for understanding the sex determination cascade. In addition, sex-biased expression of several tardigrade-specific genes which are involved their stress tolerance suggests a potential role in protecting sex-specific tissue and gametes.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
沙门氏菌转录组的性双态性。
背景:在性腺动物中,性别决定途径会诱导不同性别的动物出现不同的形态和行为特征,这种情况被称为性二态。虽然这种性别分化级联的许多成分显示出高度的多样性,但诸如双性-Mab-3相关转录因子(DMRT)等因子在动物分类群中却具有广泛的保守性。迟发型动物门的物种在形态和行为上表现出显著的性别差异,这表明存在一种调节这种二态性的途径。尽管近年来的研究积累了丰富的基因组学和动物学知识,但迟发型动物基因组中的性别差异尚未被确定。在本研究中,我们以性腺异形物种大都副蛛为研究对象,采用全局分析方法来揭示性二态性的分子基础:结果:性别鉴定标本之间的转录组分析揭示了大量差异表达基因,其中约 2,000 个雄性偏向基因集中在 29 个非雄性特异性基因组位点上。从这些区域中,我们发现了两个Macrobiotidae家族特有的DMRT旁系亲属,它们在雄性动物中的表达量明显升高,且缺乏性别特异性剪接变异。此外,系统进化分析表明,所有迟发型动物的基因组都缺乏双性同源物,这表明双性同源物是在迟发型动物分化后出现的。与性别特异性表达不同,我们没有发现性别间基因组差异的证据。我们还发现了几个表现出性别表达差异的水生物基因,这可能是一种保护性别特异性组织免受极端压力的机制:结论:这项研究为分析沙蜥性别间的遗传差异提供了一个全面的分析方法。存在雄性偏向而非雄性特异的基因组位点,并确定了科特有的雄性偏向 DMRT 亚家族,为了解性别决定级联奠定了基础。此外,几种迟发型特异基因的性别偏向表达涉及它们的应激耐受性,这表明它们在保护性别特异性组织和配子方面发挥着潜在的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Zoological Letters
Zoological Letters Agricultural and Biological Sciences-Animal Science and Zoology
CiteScore
3.60
自引率
0.00%
发文量
12
审稿时长
10 weeks
期刊介绍: Zoological Letters is an open access journal that publishes new and important findings in the zoological sciences. As a sister journal to Zoological Science, Zoological Letters covers a wide range of basic fields of zoology, from taxonomy to bioinformatics. We also welcome submissions of paleontology reports as part of our effort to contribute to the development of new perspectives in evolutionary zoology. Our goal is to serve as a global publishing forum for fundamental researchers in all fields of zoology.
期刊最新文献
Correction: Scleral appearance is not a correlate of domestication in mammals. Unique bone histology of modern giant salamanders: a study on humeri and femora of Andrias spp. The remarkable larval morphology of Rhaebo nasicus (Werner, 1903) (Amphibia: Anura: Bufonidae) with the erection of a new bufonid genus and insights into the evolution of suctorial tadpoles. Disparity of metatibial and metatarsal cuticular and sensory structures in Cixiidae (Hemiptera: Fulgoromorpha) with a metatibiotarsal diagnosis for the tribes. The burrower bug Macroscytus japonensis (Hemiptera: Cydnidae) acquires obligate symbiotic bacteria from the environment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1