{"title":"A novel method to enhance the accuracy of parameter identification in elasto-geometrical calibration for industrial robots","authors":"Shihang Yu, Jie Nan, Yuwen Sun","doi":"10.1016/j.rcim.2024.102809","DOIUrl":null,"url":null,"abstract":"<div><p>Elasto-geometrical calibration is crucial for enhancing the absolute accuracy of robots in machining operations through the identification and compensation of parameter errors. However, the presence of inconsistent measurement units and improper selection of measuring poses can result in the ill-conditioned identification matrix (ICIM) issue, consequently impacting the accuracy of parameter identification. This paper introduces a novel method to tackle this challenge. Initially, an elasto-geometrical error model is developed based on the orientation-independent measurements (OIM), efficiently reducing the impact of mismatched positions and orientations on the ICIM problem. Subsequently, a PSO-SFFS algorithm is proposed to optimize the measurement configurations and minimize the influence of measurement noise. Furthermore, the incorporation of screw theory and the consideration of parallelogram mechanisms enhance the precision and comprehensiveness of the error model. Subsequent to the development of the error model, calibration comparison experiments are conducted on an industrial robot. Both simulation and experimental results validate the effectiveness of the proposed method in improving parameter identification accuracy.</p></div>","PeriodicalId":21452,"journal":{"name":"Robotics and Computer-integrated Manufacturing","volume":"90 ","pages":"Article 102809"},"PeriodicalIF":9.1000,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Robotics and Computer-integrated Manufacturing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0736584524000966","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Elasto-geometrical calibration is crucial for enhancing the absolute accuracy of robots in machining operations through the identification and compensation of parameter errors. However, the presence of inconsistent measurement units and improper selection of measuring poses can result in the ill-conditioned identification matrix (ICIM) issue, consequently impacting the accuracy of parameter identification. This paper introduces a novel method to tackle this challenge. Initially, an elasto-geometrical error model is developed based on the orientation-independent measurements (OIM), efficiently reducing the impact of mismatched positions and orientations on the ICIM problem. Subsequently, a PSO-SFFS algorithm is proposed to optimize the measurement configurations and minimize the influence of measurement noise. Furthermore, the incorporation of screw theory and the consideration of parallelogram mechanisms enhance the precision and comprehensiveness of the error model. Subsequent to the development of the error model, calibration comparison experiments are conducted on an industrial robot. Both simulation and experimental results validate the effectiveness of the proposed method in improving parameter identification accuracy.
期刊介绍:
The journal, Robotics and Computer-Integrated Manufacturing, focuses on sharing research applications that contribute to the development of new or enhanced robotics, manufacturing technologies, and innovative manufacturing strategies that are relevant to industry. Papers that combine theory and experimental validation are preferred, while review papers on current robotics and manufacturing issues are also considered. However, papers on traditional machining processes, modeling and simulation, supply chain management, and resource optimization are generally not within the scope of the journal, as there are more appropriate journals for these topics. Similarly, papers that are overly theoretical or mathematical will be directed to other suitable journals. The journal welcomes original papers in areas such as industrial robotics, human-robot collaboration in manufacturing, cloud-based manufacturing, cyber-physical production systems, big data analytics in manufacturing, smart mechatronics, machine learning, adaptive and sustainable manufacturing, and other fields involving unique manufacturing technologies.