Long non-coding RNAs in the nucleolus: Biogenesis, regulation, and function

IF 6.1 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Current opinion in structural biology Pub Date : 2024-06-22 DOI:10.1016/j.sbi.2024.102866
Shuo Han , Ling-Ling Chen
{"title":"Long non-coding RNAs in the nucleolus: Biogenesis, regulation, and function","authors":"Shuo Han ,&nbsp;Ling-Ling Chen","doi":"10.1016/j.sbi.2024.102866","DOIUrl":null,"url":null,"abstract":"<div><p>The nucleolus functions as a multi-layered regulatory hub for ribosomal RNA (rRNA) biogenesis and ribosome assembly. Long noncoding RNAs (lncRNAs) in the nucleolus, originated from transcription by different RNA polymerases, have emerged as critical players in not only fine-tuning rRNA transcription and processing, but also shaping the organization of the multi-phase nucleolar condensate. Here, we review the diverse molecular mechanisms by which functional lncRNAs operate in the nucleolus, as well as their profound implications in a variety of biological processes. We also highlight the development of emerging molecular tools for characterizing and manipulating RNA function in living cells, and how application of such tools in the nucleolus might enable the discovery of additional insights and potential therapeutic strategies.</p></div>","PeriodicalId":10887,"journal":{"name":"Current opinion in structural biology","volume":"87 ","pages":"Article 102866"},"PeriodicalIF":6.1000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current opinion in structural biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959440X24000939","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The nucleolus functions as a multi-layered regulatory hub for ribosomal RNA (rRNA) biogenesis and ribosome assembly. Long noncoding RNAs (lncRNAs) in the nucleolus, originated from transcription by different RNA polymerases, have emerged as critical players in not only fine-tuning rRNA transcription and processing, but also shaping the organization of the multi-phase nucleolar condensate. Here, we review the diverse molecular mechanisms by which functional lncRNAs operate in the nucleolus, as well as their profound implications in a variety of biological processes. We also highlight the development of emerging molecular tools for characterizing and manipulating RNA function in living cells, and how application of such tools in the nucleolus might enable the discovery of additional insights and potential therapeutic strategies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
核仁中的长非编码 RNA:生物发生、调控和功能
核仁是核糖体 RNA(rRNA)生物发生和核糖体组装的多层调控枢纽。核仁中的长非编码 RNA(lncRNA)由不同的 RNA 聚合酶转录而来,已成为不仅微调 rRNA 转录和加工,而且塑造多相核仁凝聚物组织的关键角色。在这里,我们回顾了功能性 lncRNA 在核仁中运作的各种分子机制,以及它们在各种生物过程中的深远影响。我们还重点介绍了用于表征和操纵活细胞中 RNA 功能的新兴分子工具的发展,以及在核仁中应用这些工具如何能够发现更多的见解和潜在的治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current opinion in structural biology
Current opinion in structural biology 生物-生化与分子生物学
CiteScore
12.20
自引率
2.90%
发文量
179
审稿时长
6-12 weeks
期刊介绍: Current Opinion in Structural Biology (COSB) aims to stimulate scientifically grounded, interdisciplinary, multi-scale debate and exchange of ideas. It contains polished, concise and timely reviews and opinions, with particular emphasis on those articles published in the past two years. In addition to describing recent trends, the authors are encouraged to give their subjective opinion of the topics discussed. In COSB, we help the reader by providing in a systematic manner: 1. The views of experts on current advances in their field in a clear and readable form. 2. Evaluations of the most interesting papers, annotated by experts, from the great wealth of original publications. [...] The subject of Structural Biology is divided into twelve themed sections, each of which is reviewed once a year. Each issue contains two sections, and the amount of space devoted to each section is related to its importance. -Folding and Binding- Nucleic acids and their protein complexes- Macromolecular Machines- Theory and Simulation- Sequences and Topology- New constructs and expression of proteins- Membranes- Engineering and Design- Carbohydrate-protein interactions and glycosylation- Biophysical and molecular biological methods- Multi-protein assemblies in signalling- Catalysis and Regulation
期刊最新文献
Characterizing heterogeneity in amyloid formation processes. Biochemistry and genetics are coming together to improve our understanding of genotype to phenotype relationships Deep learning for intrinsically disordered proteins: From improved predictions to deciphering conformational ensembles Short circuit: Transcription factor addiction as a growing vulnerability in cancer Conformational penalties: New insights into nucleic acid recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1