Inger K. de Jonge, Han Olff, Emilian P. Mayemba, Stijn J. Berger, Michiel P. Veldhuis
{"title":"Understanding woody plant encroachment: A plant functional trait approach","authors":"Inger K. de Jonge, Han Olff, Emilian P. Mayemba, Stijn J. Berger, Michiel P. Veldhuis","doi":"10.1002/ecm.1618","DOIUrl":null,"url":null,"abstract":"<p>The increasing density of woody plants threatens the integrity of grassy ecosystems. It remains unclear if such encroachment can be explained mostly by direct effects of resources on woody plant growth or by indirect effects of disturbances imposing tree recruitment limitation. Here, we investigate whether woody plant functional traits provide a mechanistic understanding of the complex relationships between these resource and disturbance effects. We first assess the role of rainfall, soil fertility, texture, and geomorphology to explain variation in woody plant encroachment (WPE) following livestock grazing and consequent fire suppression across the Serengeti ecosystem. Second, we explore trait-environment relationships and how these mediate vegetation response to fire suppression. We find that WPE is strongest in areas with high soil fertility, high rainfall, and intermediate catena positions. These conditions also promote woody plant communities characterized by small stature and seed sizes smaller relative to a comparative baseline within the Serengeti ecosystem, alongside high recruit densities (linked to a recruitment-stature trade-off). The positioning of species along this “recruitment-stature axis” predicted woody stem density increase in livestock sites. Structural equation modeling suggested a causal pathway where environmental factors shape the community trait composition, subsequently influencing woody recruit numbers. These numbers, in turn, predicted an area's vulnerability to WPE. Our study underscores the importance of trait-environment relationships in predicting the impact of human alterations on local vegetation change. Understanding how environmental factors directly (resources) and indirectly (legacy effects and plant traits) determine WPE supports the development of process-based ecosystem structure and function models.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"94 3","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ecm.1618","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Monographs","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecm.1618","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The increasing density of woody plants threatens the integrity of grassy ecosystems. It remains unclear if such encroachment can be explained mostly by direct effects of resources on woody plant growth or by indirect effects of disturbances imposing tree recruitment limitation. Here, we investigate whether woody plant functional traits provide a mechanistic understanding of the complex relationships between these resource and disturbance effects. We first assess the role of rainfall, soil fertility, texture, and geomorphology to explain variation in woody plant encroachment (WPE) following livestock grazing and consequent fire suppression across the Serengeti ecosystem. Second, we explore trait-environment relationships and how these mediate vegetation response to fire suppression. We find that WPE is strongest in areas with high soil fertility, high rainfall, and intermediate catena positions. These conditions also promote woody plant communities characterized by small stature and seed sizes smaller relative to a comparative baseline within the Serengeti ecosystem, alongside high recruit densities (linked to a recruitment-stature trade-off). The positioning of species along this “recruitment-stature axis” predicted woody stem density increase in livestock sites. Structural equation modeling suggested a causal pathway where environmental factors shape the community trait composition, subsequently influencing woody recruit numbers. These numbers, in turn, predicted an area's vulnerability to WPE. Our study underscores the importance of trait-environment relationships in predicting the impact of human alterations on local vegetation change. Understanding how environmental factors directly (resources) and indirectly (legacy effects and plant traits) determine WPE supports the development of process-based ecosystem structure and function models.
期刊介绍:
The vision for Ecological Monographs is that it should be the place for publishing integrative, synthetic papers that elaborate new directions for the field of ecology.
Original Research Papers published in Ecological Monographs will continue to document complex observational, experimental, or theoretical studies that by their very integrated nature defy dissolution into shorter publications focused on a single topic or message.
Reviews will be comprehensive and synthetic papers that establish new benchmarks in the field, define directions for future research, contribute to fundamental understanding of ecological principles, and derive principles for ecological management in its broadest sense (including, but not limited to: conservation, mitigation, restoration, and pro-active protection of the environment). Reviews should reflect the full development of a topic and encompass relevant natural history, observational and experimental data, analyses, models, and theory. Reviews published in Ecological Monographs should further blur the boundaries between “basic” and “applied” ecology.
Concepts and Synthesis papers will conceptually advance the field of ecology. These papers are expected to go well beyond works being reviewed and include discussion of new directions, new syntheses, and resolutions of old questions.
In this world of rapid scientific advancement and never-ending environmental change, there needs to be room for the thoughtful integration of scientific ideas, data, and concepts that feeds the mind and guides the development of the maturing science of ecology. Ecological Monographs provides that room, with an expansive view to a sustainable future.