Chuliang Song, Muyang Lu, Joseph R. Bennett, Benjamin Gilbert, Marie-Josée Fortin, Andrew Gonzalez
{"title":"A geometric approach to beta diversity","authors":"Chuliang Song, Muyang Lu, Joseph R. Bennett, Benjamin Gilbert, Marie-Josée Fortin, Andrew Gonzalez","doi":"10.1002/ecm.70008","DOIUrl":null,"url":null,"abstract":"<p>Beta diversity—the variation among community compositions in a region—is a fundamental measure of biodiversity. Most classic measures have posited that beta diversity is maximized when each community has a distinct, nonoverlapping set of species. However, this assumption overlooks the ecological significance of species interactions and non-additivity in ecological systems, where the function and behavior of species depend on other species in a community. Here, we introduce a geometric approach to measure beta diversity as the hypervolume of the geometric embedding of a metacommunity. Besides considering compositional distinctiveness as in classic metrics, this geometric measure explicitly incorporates species associations and captures the idea that adding a unique, species-rich community to a metacommunity increases beta diversity. We show that our geometric measure is closely linked to and naturally extends previous information- and variation-based measures. Additionally, we provide a unifying geometric framework for widely adopted extensions of beta diversity. Applying our geometric measures to empirical data, we address two long-standing questions in beta diversity research—the latitudinal pattern of beta diversity and the effect of sampling effort—and present novel ecological insights that were previously obscured by the limitations of classic approaches. In sum, our geometric approach offers a new and complementary perspective on beta diversity, is immediately applicable to existing data, and holds promise for advancing our understanding of the complex relationships between species composition, ecosystem functioning, and stability.</p>","PeriodicalId":11505,"journal":{"name":"Ecological Monographs","volume":"95 1","pages":""},"PeriodicalIF":7.1000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Monographs","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ecm.70008","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Beta diversity—the variation among community compositions in a region—is a fundamental measure of biodiversity. Most classic measures have posited that beta diversity is maximized when each community has a distinct, nonoverlapping set of species. However, this assumption overlooks the ecological significance of species interactions and non-additivity in ecological systems, where the function and behavior of species depend on other species in a community. Here, we introduce a geometric approach to measure beta diversity as the hypervolume of the geometric embedding of a metacommunity. Besides considering compositional distinctiveness as in classic metrics, this geometric measure explicitly incorporates species associations and captures the idea that adding a unique, species-rich community to a metacommunity increases beta diversity. We show that our geometric measure is closely linked to and naturally extends previous information- and variation-based measures. Additionally, we provide a unifying geometric framework for widely adopted extensions of beta diversity. Applying our geometric measures to empirical data, we address two long-standing questions in beta diversity research—the latitudinal pattern of beta diversity and the effect of sampling effort—and present novel ecological insights that were previously obscured by the limitations of classic approaches. In sum, our geometric approach offers a new and complementary perspective on beta diversity, is immediately applicable to existing data, and holds promise for advancing our understanding of the complex relationships between species composition, ecosystem functioning, and stability.
期刊介绍:
The vision for Ecological Monographs is that it should be the place for publishing integrative, synthetic papers that elaborate new directions for the field of ecology.
Original Research Papers published in Ecological Monographs will continue to document complex observational, experimental, or theoretical studies that by their very integrated nature defy dissolution into shorter publications focused on a single topic or message.
Reviews will be comprehensive and synthetic papers that establish new benchmarks in the field, define directions for future research, contribute to fundamental understanding of ecological principles, and derive principles for ecological management in its broadest sense (including, but not limited to: conservation, mitigation, restoration, and pro-active protection of the environment). Reviews should reflect the full development of a topic and encompass relevant natural history, observational and experimental data, analyses, models, and theory. Reviews published in Ecological Monographs should further blur the boundaries between “basic” and “applied” ecology.
Concepts and Synthesis papers will conceptually advance the field of ecology. These papers are expected to go well beyond works being reviewed and include discussion of new directions, new syntheses, and resolutions of old questions.
In this world of rapid scientific advancement and never-ending environmental change, there needs to be room for the thoughtful integration of scientific ideas, data, and concepts that feeds the mind and guides the development of the maturing science of ecology. Ecological Monographs provides that room, with an expansive view to a sustainable future.