Multi-file dynamic compression method based on classification algorithm in DNA storage.

IF 2.6 4区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Medical & Biological Engineering & Computing Pub Date : 2024-06-26 DOI:10.1007/s11517-024-03156-2
Kun Bi, Qi Xu, Xin Lai, Xiangwei Zhao, Zuhong Lu
{"title":"Multi-file dynamic compression method based on classification algorithm in DNA storage.","authors":"Kun Bi, Qi Xu, Xin Lai, Xiangwei Zhao, Zuhong Lu","doi":"10.1007/s11517-024-03156-2","DOIUrl":null,"url":null,"abstract":"<p><p>The exponential growth in data volume has necessitated the adoption of alternative storage solutions, and DNA storage stands out as the most promising solution. However, the exorbitant costs associated with synthesis and sequencing impeded its development. Pre-compressing the data is recognized as one of the most effective approaches for reducing storage costs. However, different compression methods yield varying compression ratios for the same file, and compressing a large number of files with a single method may not achieve the maximum compression ratio. This study proposes a multi-file dynamic compression method based on machine learning classification algorithms that selects the appropriate compression method for each file to minimize the amount of data stored into DNA as much as possible. Firstly, four different compression methods are applied to the collected files. Subsequently, the optimal compression method is selected as a label, as well as the file type and size are used as features, which are put into seven machine learning classification algorithms for training. The results demonstrate that k-nearest neighbor outperforms other machine learning algorithms on the validation set and test set most of the time, achieving an accuracy rate of over 85% and showing less volatility. Additionally, the compression rate of 30.85% can be achieved according to k-nearest neighbor model, more than 4.5% compared to the traditional single compression method, resulting in significant cost savings for DNA storage in the range of $0.48 to 3 billion/TB. In comparison to the traditional compression method, the multi-file dynamic compression method demonstrates a more significant compression effect when compressing multiple files. Therefore, it can considerably decrease the cost of DNA storage and facilitate the widespread implementation of DNA storage technology.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-024-03156-2","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

The exponential growth in data volume has necessitated the adoption of alternative storage solutions, and DNA storage stands out as the most promising solution. However, the exorbitant costs associated with synthesis and sequencing impeded its development. Pre-compressing the data is recognized as one of the most effective approaches for reducing storage costs. However, different compression methods yield varying compression ratios for the same file, and compressing a large number of files with a single method may not achieve the maximum compression ratio. This study proposes a multi-file dynamic compression method based on machine learning classification algorithms that selects the appropriate compression method for each file to minimize the amount of data stored into DNA as much as possible. Firstly, four different compression methods are applied to the collected files. Subsequently, the optimal compression method is selected as a label, as well as the file type and size are used as features, which are put into seven machine learning classification algorithms for training. The results demonstrate that k-nearest neighbor outperforms other machine learning algorithms on the validation set and test set most of the time, achieving an accuracy rate of over 85% and showing less volatility. Additionally, the compression rate of 30.85% can be achieved according to k-nearest neighbor model, more than 4.5% compared to the traditional single compression method, resulting in significant cost savings for DNA storage in the range of $0.48 to 3 billion/TB. In comparison to the traditional compression method, the multi-file dynamic compression method demonstrates a more significant compression effect when compressing multiple files. Therefore, it can considerably decrease the cost of DNA storage and facilitate the widespread implementation of DNA storage technology.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于 DNA 存储分类算法的多文件动态压缩方法。
数据量的指数级增长要求采用替代存储解决方案,而 DNA 存储是最有前途的解决方案。然而,与合成和测序相关的高昂成本阻碍了它的发展。预压缩数据被认为是降低存储成本的最有效方法之一。然而,不同的压缩方法对同一文件的压缩率不同,用单一方法压缩大量文件可能无法达到最大压缩率。本研究提出了一种基于机器学习分类算法的多文件动态压缩方法,它能为每个文件选择合适的压缩方法,尽可能减少 DNA 中存储的数据量。首先,对收集到的文件采用四种不同的压缩方法。随后,选择最佳压缩方法作为标签,并将文件类型和大小作为特征,将其放入七种机器学习分类算法中进行训练。结果表明,在验证集和测试集上,k-近邻在大多数情况下都优于其他机器学习算法,准确率超过 85%,且波动较小。此外,根据 k 近邻模型,压缩率可达到 30.85%,比传统的单一压缩方法高出 4.5%,从而大大节省了 DNA 的存储成本,节省幅度在 0.48 到 30 亿美元/TB。与传统的压缩方法相比,多文件动态压缩方法在压缩多个文件时显示出更显著的压缩效果。因此,它可以大大降低 DNA 存储的成本,促进 DNA 存储技术的广泛应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Medical & Biological Engineering & Computing
Medical & Biological Engineering & Computing 医学-工程:生物医学
CiteScore
6.00
自引率
3.10%
发文量
249
审稿时长
3.5 months
期刊介绍: Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging. MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field. MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).
期刊最新文献
Numerical modeling and analysis of neck injury induced by parachute opening shock. Load-bearing optimization for customized exoskeleton design based on kinematic gait reconstruction. Research on imaging biomarkers for chronic subdural hematoma recurrence. Unsupervised cervical cell instance segmentation method integrating cellular characteristics. Optimization of three-dimensional esophageal tumor ablation by simultaneous functioning of multiple electrodes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1