Hierarchical porous covalent organic framework nanosheets with adjustable large mesopores

IF 19.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Chem Pub Date : 2024-10-10 DOI:10.1016/j.chempr.2024.05.022
{"title":"Hierarchical porous covalent organic framework nanosheets with adjustable large mesopores","authors":"","doi":"10.1016/j.chempr.2024.05.022","DOIUrl":null,"url":null,"abstract":"<div><div><span>Synchronous manipulation of meso-structure and architecture of covalent organic frameworks<span><span><span> (COFs) is vital for customized applications but still remains challenging. Here, we develop a polymerization-induced co-assembly approach to construct hierarchical porous COF-based </span>nanosheets with adjustable large </span>mesopores (7–40 nm), intrinsic micropores (∼1.2 nm), ultra-thin thickness (∼24 nm), and a crystalline wall. Furthermore, density functional theory calculations and adsorption experiments indicated that the complementarity of the two-dimensional architecture and intrinsic micropores of COFs can effectively confine iodine molecules. Meanwhile, the exposed nitrogen-containing active sites created by the unique mesoporous structure can strongly anchor iodine species, thereby greatly inhibiting their dissolution and shuttling. Therefore, as a cathode for zinc-iodine battery, they delivered an outstanding rate capability (191.2 mAh g</span></span><sup>−1</sup> at 0.5 A g<sup>−1</sup>) and stable long-term cyclability (154.8 mAh g<sup>−1</sup> at 3 A g<sup>−1</sup> after 20,000 cycles). This approach sheds light on the precise fabrication of crystalline porous materials for diverse applications.</div></div>","PeriodicalId":268,"journal":{"name":"Chem","volume":null,"pages":null},"PeriodicalIF":19.1000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2451929424002444","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Synchronous manipulation of meso-structure and architecture of covalent organic frameworks (COFs) is vital for customized applications but still remains challenging. Here, we develop a polymerization-induced co-assembly approach to construct hierarchical porous COF-based nanosheets with adjustable large mesopores (7–40 nm), intrinsic micropores (∼1.2 nm), ultra-thin thickness (∼24 nm), and a crystalline wall. Furthermore, density functional theory calculations and adsorption experiments indicated that the complementarity of the two-dimensional architecture and intrinsic micropores of COFs can effectively confine iodine molecules. Meanwhile, the exposed nitrogen-containing active sites created by the unique mesoporous structure can strongly anchor iodine species, thereby greatly inhibiting their dissolution and shuttling. Therefore, as a cathode for zinc-iodine battery, they delivered an outstanding rate capability (191.2 mAh g−1 at 0.5 A g−1) and stable long-term cyclability (154.8 mAh g−1 at 3 A g−1 after 20,000 cycles). This approach sheds light on the precise fabrication of crystalline porous materials for diverse applications.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有可调大介孔的分层多孔共价有机框架纳米片
同步操纵共价有机框架(COFs)的中层结构和体系结构对定制应用至关重要,但仍然具有挑战性。在这里,我们开发了一种聚合诱导的共组装方法,以构建具有可调节的大中孔(7-40 nm)、本征微孔(∼1.2 nm)、超薄厚度(∼24 nm)和晶壁的分层多孔 COF 基纳米片。此外,密度泛函理论计算和吸附实验表明,COFs 的二维结构和固有微孔的互补性可有效禁锢碘分子。同时,独特的介孔结构所形成的外露含氮活性位点可以强力锚定碘物种,从而极大地抑制其溶解和穿梭。因此,作为锌碘电池的阴极,它们具有出色的速率能力(0.5 A g-1 时为 191.2 mAh g-1)和稳定的长期循环能力(20,000 次循环后,3 A g-1 时为 154.8 mAh g-1)。这种方法为精确制造晶体多孔材料的各种应用提供了启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chem
Chem Environmental Science-Environmental Chemistry
CiteScore
32.40
自引率
1.30%
发文量
281
期刊介绍: Chem, affiliated with Cell as its sister journal, serves as a platform for groundbreaking research and illustrates how fundamental inquiries in chemistry and its related fields can contribute to addressing future global challenges. It was established in 2016, and is currently edited by Robert Eagling.
期刊最新文献
De novo luciferases enable multiplexed bioluminescence imaging One-pot catalytic conversion of polyethylene wastes to gasoline through a dual-catalyst system New light on proton transfer: Spectral and kinetic signature of a transient Eigen complex Sequence-defined main-chain photoswitching macromolecules with odd-even effect-controlled properties Direct production of o-xylene from six-component BTEXs using a channel-pore interconnected metal-organic framework
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1